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Introduction

With the explosive growth in the adoption of Artificial Intelligence 
(AI) to address a large range of problems that were deemed very 
hard, the information technology and semiconductor communities 
have rushed to develop computing platforms that provide the 
desired performance at an acceptable energy cost. So far, the 
majority of attention and investment has been directed towards 
“Cloud AI”, with “Data” being the largest common denominator in 
creating value for industries, governments, and individuals’ lives. 
However, the quest for intelligence is fast becoming a prominent 
and essential feature at the “Edge” as well, where trillions of 
“things” will combine to generate even more data. Given the 
severe constraints that govern edge devices in terms of efficiency, 
footprint, robustness and cost, it is self-evident that bringing true 
intelligence to the edge will require profound innovation at all 
levels of the stack from the computational concepts all the way 
down the implementation technology. This observation spans 
the full range of applications ranging from automotive, mobile, 
industrial, immersion, IoT to wearable and implantable. In this white 
paper, we evaluate a number of plausible options, explore possible 
paths forward, and present a set of recommendations on how to 
make it happen.

This White Paper is the direct outcome of a brainstorming 
workshop that was held in Leuven on September 17, 2019 with the 
authors and contributors attending.
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Why focus on the edge?
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There is little doubt that artificial intelligence (AI) and more particularly, Machine Learning (ML) 
will be an essential if not dominant part of the computing landscape over the next decade. 
Various forms of AI are already adopted by virtually every branch of industry, government 
and society, and this may just be the beginning. It hence comes as no surprise that all major 
industrial nations and regions are investing heavily in the development of the next generation 
of AI services, products, soft-and hardware platforms. At the latest count, there are 8705 
startups and companies listed in Crunchbase who are relying on machine learning for their 
main and ancillary applications, products and services. Artificial Intelligence-related companies 
raised $9.3B in 2018, a 72% increase over 2017, according to PwC/CB Insights MoneyTree Report, 
Q4 [CBI18]. In the second quarter of 2019 alone, $7.4 Billion was invested in AI startups. And 
while the US was responsible for the lion share of the investment until recently, regions/
countries such as China, Japan, Europe and Israel are accelerating very quickly.

From a computational perspective, the data-driven and learning-based nature of AI translates 
into programming models and compute platforms that fundamentally differ from those that 
have dominated computing for the last 7 decades. While it is true that most AI tasks can be 
executed on existing compute-servers, they cannot do so efficiently. Traditional processors 
such as CPUs and conventional GPUs do not natively map the processing kernels and data flow 
patterns found in most AI algorithms. Complexity, performance, and power considerations 
combined with the need to process massive data sets, preferably with large degrees of inherent 
parallelism, have therefore spawned a new generation of computer architectures that are 
optimized for specific AI tasks. The processing units in these architectures are often denoted 
as NPUs (neural processing units) or TPUs (tensor processing units). They form an addition 
to traditional CPUs and GPUs in the form of either specialized accelerators, standalone 
processors, or modifications of existing processor architectures (such as GPUs with added 
tensor cores). As such, the market for chip sets focused on AI has exploded. The AI chip set 
market as a whole is expected to more than double over the next five years [Eet19]. More 
than 60 companies worldwide are in advanced stages of either building or selling specialized 
processors to accelerate AI applications [Ark19]. In total, venture capital firms have invested 
more than $2.6 Billion across 40 startups in this field. 

However, some caveats are worth raising. Most of the investment in AI hardware has been 
focused on cloud intelligence and big data – for very good reasons, as the vast majority of AI 
applications and services have been cloud-based to date. While this has created opportunities 
for semiconductor companies such as Nvidia or Intel, the momentum is changing towards 
a vertical integration model monopolized by cloud companies and specialized consumer 
companies. Amazon, Google, Facebook, Apple, Tesla, Alibaba, Baidu, etc. are all developing or 
deploying their own customized hardware that is optimized for their own specific application 
domains and functions, thereby reducing the market for the traditional semiconductor 
companies. Having said this, there is no question that there is still plenty of room for creativity, 
innovation and business opportunity in this space.

“The AI growth 
factor for the Edge is 
expected to be even 
larger than for the 
Cloud over the next 
decade.”
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While the focus of AI hardware has been primarily on the cloud, another development has 
been happening somewhat under the radar screen, primarily driven by the explosive growth 
in the mobility, IoT, wearables and Industrial Internet application domains. While early IoT 
devices were primarily sense-communicate modules hooked to the cloud, the trend nowadays 
is towards adding local intelligence for a variety of reasons including communication cost, 
latency, robustness, security, privacy, latency and power efficiency. Hence an increasing 
interest in Edge AI is being observed. Here, inference and often even learning functions are 
deployed in close proximity to sensors and actuators within resource-constrained devices, 
such as smartphones, IoT devices, smart wearables, domotics, and autonomous vehicles. The 
AI growth factor for the Edge is expected to be even larger than for the Cloud over the next 
decade [Tra19, Eet19]. Looking at the AI chip market, revenue from Edge AI may grow at the 
same if not even faster rate than that from Cloud AI, as illustrated in Figure 1 [Eet19, ABI19]. A 
healthy growth from $1.9B in 2018 to $7B in 2024 is projected, presenting plenty of opportunity 
for both established semiconductor companies and start-ups alike. However, given the broad 
application space, that market is likely to be more fragmented.

Fig. 1: Total annual revenue from AI chipset sales, 2017 to 2024 (Source: ABI Research and embedded.com) [ABI19]

While one may argue that there is a large common denominator between Cloud and Edge 
AI, there are also many reasons to believe that their roadmaps will diverge in substantial ways 
over coming years. Their applications differ and so do their implementation constraints. Most 
Cloud applications are focusing on processing and interpreting large data sets, and as such 
data memory bandwidth, and computational performance are paramount. Edge devices, on 
the other hand, often face extremely tight constraints in terms of size and energy budget. 
Moving massive amounts of data from the Edge to the Cloud is probably not sustainable 
with the current (and even the next) generation of communication technology (Fig. 2), and is 
very inefficient from an energetic point of view. Even more, it poses additional security risks. 
Another important differentiation is the stringent round-trip latency requirement (often of 
the order of milliseconds or smaller), in applications that require real-time decision making 
such as autonomous mobility and healthcare. As a result, realizations at the edge often end up 
using entirely different computational models and optimization methods, architectures and 
ultimately also integrated system and circuit technologies. 
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Finally, there is one more argument why further divergence is extremely likely. While most early 
realizations of Edge AI focus on data analysis and classification, or event/anomaly detection 
(often in collaboration with the cloud), an observed trend is towards increased autonomy and 
closed-loop feedback. In this, the results of the data analysis serve as inputs to a controller 
and are translated in concrete and immediate action within a very tight latency window. This is 
definitely the case in applications such as autonomous mobile devices (cars, drones), robotics, 
human-machine interfaces (think AR/VR), brain-machine interfaces and wearable medical 
devices. This is captured in Fig 3, which pictures the evolution of AI towards automated 
intelligent decisioning systems (ADS). In addition to input (sensors) and output (actuator) 
modalities, those systems need to combine understanding, reasoning and decisioning.  While 
one can easily imagine that parts of such systems can be run from a centralized location, 
energy, latency, robustness, security and privacy considerations form powerful arguments for 
more distributed realizations with a large share of the functionality executed on the Edge 
device itself (or a cluster/swarm thereof), and eventually penetrating all the way into the 
sensors and actuators (”in-sensor computing”). In all likelihood, a majority of the systems will 
combine both centralized and distributed functionality though.

While major progress has been made over the past decade, it is fair to state that we are 
far away from the realization of such intelligent decisioning systems in form factors 
and performance/power budgets imposed by the systems they are embedded in. Even 
if we would have access to implementation technologies that would meet those goals 
and restrictions (and unfortunately, as of yet, we do not …), the state-of-the-art in artificial 
intelligence itself is still not up to the needs of the described reasoning and decisioning 
systems. Indeed, today’s AI is not even close to human intelligence - a fair target to pursue 
- in so many ways that will prove to be crucially important.  Beyond reasoning, autonomous 
entities need to be capable of dealing with novelty, learning from analogy, remember and 
forget, evolve, and adhere to ethical behavior. To paraphrase Facebook’s Yan LeCunn, “we need 
machines learning to learn, and build their own models of the world as they are encountering 
it.” [LEC19a] These observations will almost without a doubt lead to paradigm-shifting 
approaches that go beyond the current state-of-the-art, and will increase demands on the 
implementation platform manifold. A number of research programs are currently under way or 
have been launched worldwide to explore the potential of alternative approaches to artificial 
intelligence. An interesting perspective on some of these evolutions is presented in a White 
Paper published by the UC Berkeley AI group [Ber19], a summary of which is plotted in the 
chart of Fig. 4. There is no doubt that the outcome of those will continue to inspire innovation 
in the Edge AI implementation platforms. 

Millions CLOUD

Billions FOG

EDGE
Trillions

>1017 FLOPS

>108 IPS

x109

WHITE PAPER ARTIFICIAL INTELLIGENCE
AI AT THE EDGE - A ROADMAP6

Fig. 2: Edge-to-Cloud information processing model for AI leads to unsustainable and inefficient zettabyte data movement (Source: EPFL View on Future Grand Challenges [AI19]).
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In the rest of this document, we will argue that the effect of profound innovation in 
hardware realizations combined with the massive deployment of sensor and actuator 
devices in the physical world will accelerate the creation, the growth, and the evolution 
of intelligence at the edge. After all, it was the interplay between rapidly advancing hardware 
and the availability of huge data sets that led to the breakthroughs in conventional, cloud-
based AI [LEC19b]. To help focus the discussion, we first describe the state-of-the-art in Edge 
AI, discuss metrics to gauge progress, and identify technology opportunities. We then proceed 
by proposing a challenging set of application drivers (“moonshots”) that may help to not only 
define actionable metrics, but also metricize progress and spur innovative thinking.  The paper 
concludes with a set of recommendations on how to further the field and what concrete 
actions to take.

TRENDS CHALLENGES & RESEARCH

Mission-critical AI ACTING IN DYNAMIC ENVIRONMENTS
R1: Continual learning
R2: Robust decisions
R3: Explainable decisions

SECURE AI
R4: Secure enclaves
R5: Adversarial learning
R6: Shared learning on confidential data

AI-SPECIFIC ARCHITECTURES
R7: Domain specific hardware
R8: Composable AI systems
R9: Cloud-edge systems

Personalized AI

AI across organizations

AI demands outpacing
Moore’s Law

R1-R2-R3

R6

R8 - R9

R7 - R8

R7 - R8 - R9

R4 - R5 - R6

R4 - R5

R7 - R9

SYSTEM OR DEVICE

DEFINING ARTIFICIAL INTELLIGENCE

ARTIFICIAL INTELLIGENCE

AUTOMATED DECISIONING SYSTEMS

Vision

Sound

Pressure

Movement

Voice
UNDERSTANDING

PRE-PROCESSING INFERENCE

LEARNING

REASONING DECISIONING

INPUT

ACTIONS

TRENDS CHALLENGES & RESEARCH

Mission-critical AI ACTING IN DYNAMIC ENVIRONMENTS
R1: Continual learning
R2: Robust decisions
R3: Explainable decisions

SECURE AI
R4: Secure enclaves
R5: Adversarial learning
R6: Shared learning on confidential data

AI-SPECIFIC ARCHITECTURES
R7: Domain specific hardware
R8: Composable AI systems
R9: Cloud-edge systems

Personalized AI

AI across organizations

AI demands outpacing
Moore’s Law

R1-R2-R3

R6

R8 - R9

R7 - R8

R7 - R8 - R9

R4 - R5 - R6

R4 - R5

R7 - R9

SYSTEM OR DEVICE

DEFINING ARTIFICIAL INTELLIGENCE

ARTIFICIAL INTELLIGENCE

AUTOMATED DECISIONING SYSTEMS

Vision

Sound

Pressure

Movement

Voice
UNDERSTANDING

PRE-PROCESSING INFERENCE

LEARNING

REASONING DECISIONING

INPUT

ACTIONS

WHITE PAPER ARTIFICIAL INTELLIGENCE
AI AT THE EDGE - A ROADMAP 7

Fig. 3: The evolution to automated decisioning systems [Ket19]

Fig. 4: The Berkeley View on AI. Observe that of all trends, mission-critical, personalized and outpacing Moore’s Law all apply to Edge AI. 
The vast majority of identified challenges also apply to the Edge [Ber19].



WHITE PAPER ARTIFICIAL INTELLIGENCE
AI AT THE EDGE - A ROADMAP8

The state of the art in (edge) AI and its realizations

While the field of Edge AI is relatively young, progress has been swift. Both within academia and 
industry, AI building blocks and integrated systems have been realized that have enabled the 
realization of some AI functionality within mobiles and edge devices. For instance, functions 
such as facial recognition are now widely available on mobile devices.

Over the past years, tremendous progress has been made in reducing the footprint of AI 
in terms of power, size and cost. AI accelerators have been designed that allow substantial 
AI functionality to be moved to the edge. Gains of orders of magnitude in efficiency and 
complexity were obtained through a number of design choices and optimizations: new network 
topologies, massive hardware concurrency (MAC arrays), dedicated memory interfaces, 
customization, exploitation of sparsity, reduction in computational accuracy, in-memory 
computing, etc. An overview of a number of these techniques was presented in a keynote 
presentation by HJ Yoo (KAIST) at ISSCC 2019 [Yoo19]. Some of these advances are illustrated 
in Fig. 5. Many of the underlaying principles were introduced by groups in Europe, including KU 
Leuven, IMEC and ETHZ [e.g. Moo17, Ban18], as well universities in the United States, China and 
Korea. Unfortunately, the realization of true Automated Intelligent Decisioning Systems (ADS) 
and human-like capability will require at least two orders of magnitude of improvements in 
efficiency and complexity that can only be accomplished through innovation and creativity1. 

In identifying the path forward, it is worth pointing out that the field of Artificial Intelligence, 
as it has emerged over the past 4 decades, is broad and actually covers a number of widely 
diverging approaches, technologies and methodologies. It is not the intent of this paper to 
discuss this in great depth (there is a vast literature available doing just that). However, some 
broad classifications are necessary, as they help rationalize the various computational models 
and architectural choices.

1970s 1980s 1990s 2012 ~ 2014 2015 2016 2017 ~
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YOLO v3

WGAN
CycleGAN
StarGAN

DiscoGAN

VoxelNet
PointNet++
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BERT

Attention Only
Network

LeNet
Cognitron

CNN

YOLO v2

DenseNet
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Fast R-CNN
Faster R-CNN

YOLO
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R-CNN

AlexNet
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GoogleNet ResNet

SegNet
PointNet
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Fig. 5: Evolution of deep neural networks [Yoo19]
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•	 In general, artificial intelligence covers any approach that mimics human intelligence, 
that is any program that can sense, reason, act, learn and adapt. As such, rule-based 
systems fall under this definition, so do smart controllers. Under this general header, 
a number of current approaches can be identified. It is fair to assume that we are still 
in the dawn of true Human AI, and that we are bound to see the emergence of other 
models and approaches in the coming years. Some of these may be inspired by a 
deeper understanding of the brain and its operational principles, others may arise from 
advances in technology).   To date however, the most commonly-used techniques can 
be coarsely subdivided in the following classes (see Fig. 6):2

•	 Machine Learning (ML) is the scientific study of algorithms and statistical models 
that computer systems use to perform a specific task without using explicit 
instructions, relying on patterns and inference instead. It is seen as a subset of 
artificial intelligence. Machine learning algorithms build a mathematical model based 
on sample data, known as “training data”, in order to make predictions or decisions 
without being explicitly programmed to perform the task [Wikipedia]. Examples 
of popular ML approaches include regression and support-vector machines.  
 
One prominent ML approach is the field of Bayesian Machine Learning.  Bayesian 
statistics is a branch of statistics where quantities of interest are treated as random 
variables, and one draws conclusions by analyzing the posterior distribution over 
these quantities given the observed data. While the core ideas are decades or even 
centuries old, Bayesian ideas have had a big impact in machine learning in the past 
20 years or so, because of the flexibility they provide in building structured models 
of real-world phenomena, their ability to train on small datasets, their capability to 
bring in expert knowledge and their robustness to missing or faulted observations. 
[Definition lifted from https://metacademy.org/roadmaps/rgrosse/bayesian_machine_learning]. 

(BAYESIAN) MACHINE LEARNING NEUROMORPHIC NEURO-INSPIRED

X Y Z

Fig. 6: Artificial intelligence encompasses a plurality of tools and methods.
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•	 Neuro- or brain-inspired computing refers to computational models and methods 
that are based on abstractions and models of the perceived mechanisms and 
topologies of the brain. The goal is to enable the machine to realize various cognitive 
abilities and coordination mechanisms of human beings in a brain-inspired manner. One 
can argue that this approach is a subset of machine learning, as programs are constructed 
from the observation of data. At the same time, the construction and the interpretation 
of the models is fundamentally different, hence meriting them a sub-class on their own. 
 
A prominent example of this class of AI is the field of artificial neural nets (ANN), with deep 
learning networks as its most prominent representative. The latter includes architectures 
such as deep belief networks, convolutional neural nets and recurrent neural nets. These 
approaches have been immensely successful over a broad range of specific tasks that 
range from playing games such as Go over facial recognition to autonomous driving. It 
builds around an abstract model of a “neuron”, an interconnect topology, and overlaying 
learning and inference mechanisms. It is fair to state the true breakthrough of ANNs was 
triggered with the availability of huge data sets and fast parallel computing platforms.  
 
Other examples of neuro-inspired computing approaches include high-dimensional 
computing (HDC), which uses random patterns in high-dimensional spaces (as inspired 
by the operations in the cerebellum) to perform a broad range of classification, 
recognition and reasoning tasks, holographic computing and sparse distributed 
memory [Kan09, Rah19]. A close relative is the domain of reservoir computing, where 
a largely untrained part of a neural net acts as a ‘reservoir’ of dimensionality that 
makes classification by means of separating hyperplanes easer by virtue of the added 
dimensions. There is no question that further advances in computational neuroscience 
will lead to novel schemes, some of which may be very attractive to operation at the 
edge. Reflect, for instance, about the in-sensor processing happening in our auditory, 
olfactory, vision, tactile and proprioceptive sensory paths, or the machinery that keeps 
our human body optimally tuned over a broad range of operational conditions.
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•	 Neuromorphic computing is a concept developed by Carver Mead in the late 1980s 
[Mea90], describing the use of very-large-scale integration (VLSI) systems containing 
electronic analog circuits to mimic neuro-biological architectures present in the 
nervous system. In recent times, the term neuromorphic has been used to describe 
analog, digital, mixed-mode analog/digital VLSI, and software systems that implement 
models of neural systems (for perception, motor control, or multisensory integration) 
[Wikipedia]. While it technically belongs to the domains of machine learning and 
neuro-inspired computing, its inspiration is to build physical computing systems that 
mimic the operation of the brain in a bottom-up fashion. As such, it presents more 
of a computing architecture than a computational model. Prominent examples of 
commercial implementations of neuromorphic computers are the IBM TrueNorth 
processor [Mod14] and the Intel Loihi processor [Loi17]. The Spiking Neural Net (SNN) 
is one class of neuromorphic NN that has received a lot of attention. Its event-driven 
executional model makes it particularly attractive for low-energy realizations [Bal18].

Each of the approaches mentioned above comes with pros and cons. For instance, some 
Bayesian ML approaches work well when an appropriate model can be created. On the other 
hand, deep neural nets tend to be flexible and rapidly deployable, yet are complex (sometimes 
requiring 100+ layers and millions of weights) and training (learning) is expensive. Neuromorphic 
approaches, while being most amenable to advances in implementation technology, are 
bottom-up and often suffer from a lack of a compelling computational model. Other ML 
methods overcome these issues by easily integrating expert knowledge, yet, they suffer from 
reduced task accuracy or require more input regarding model definition.  It is our belief that 
“automated decisioning systems” will combine various flavors of machine learning or hybrid 
combinations thereof (in combination with some traditional instruction-set processors). The 
first examples of such are emerging. For instance, the field of Bayesian Deep learning combines 
ANNs and Bayesian architectures. The myriad of choices at all levels of the design hierarchy 
speak to the need for an exploration environment that (i) supports objective comparison 
the effectiveness and efficiency of the various approaches in light of advanced technology, 
device and circuit options, and (ii) provides the capability to look forward into the future. 
This all hinges on the availability of a number of fair metrics that support an apple-to-apple 
comparison, as we discuss in the next section. 

One thing is quite for certain however – the tradeoffs at the edge will lead to vastly different 
choices in terms of strategy, architectures and technologies used compared to what we are 
observing in the Cloud.
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Fig. 7: Energy-performance trade-off for various AI implementation platforms [adopted from Bei18].

The metrics

Building a roadmap requires the identification of a number of figures of merit, and models or 
projections on how these will improve over time. The technology roadmap for semiconductors 
(ITRS) was a perfect example of this, as it featured from the very beginning a number of 
easily trackable metrics, such as: number of transistors per chip, cost per transistor, clock 
speed, number of operations per second, energy per operation, memory density, etc. When 
combining these with specific computational (e.g. digital logic) and architectural models (e.g. 
the instruction set processor), more specific metrics can be defined such as the number of 
instructions per second or the energy per instruction.

With the advent of innovative AI platforms, coming up with insightful metrics may not be 
that simple3. Plots showing trade-off between performance (in GOP/sec) versus power, such 
as shown in Fig. 7, only make sense when it is possible to define what an equivalent operation 
means over vastly different implementation platforms. In addition, the type of function being 
implemented and consequently the definition of system performance may vary substantially 
over the implementation alternatives. Finally, also the flexibility of the platform as defined by 
its ability to map a suite of AI algorithms, might differ, yet has a tremendous impact. 

All these arguments indicate that a different approach needs to be taken if one wants to 
effectively measure, compare and project the evolution of various AI implementation strategies. 
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The technology opportunities

AI functions differ in many important ways from the traditional algorithms inspired by the 
Von Neuman programming approach. This inevitably translates into different implementation 
needs, and provides opportunities from an architecture perspective. Just to name a few of 
the key differences: a learning-based versus a stored program model; the roles of long and 
short-term memory; the intertwining or separation of logic and memory; the density and 
the topology of the interconnects; the massive amount of concurrency available; and the 
statistical nature of the computation. These differences can have a profound impact on how 
the essential building blocks are realized, and the choice of the underlying circuit and device 
technologies. This divergence is even more outspoken at the edge where volume, energy and 
cost of implementation matter the most, and the matching between computational function 
and architecture is of greater importance.  It is fair to state that AI edge applications will become 
an essential driver for the development of the next-generation hardware implementation 
technologies and the large-scale manufacturing to support it. 

Based on an evaluation of the technology landscape, we believe that the following 
developments have potentially the largest impact.

The most reasonable alternative is to use a system-level approach, in which an operation 
is defined as a much larger function or a combination of functions (such as a classification 
or a recognition task) and the metrics of interest are functions/sec and energy/function 
for a given set of specifications and constraints.  Other metrics can be volumetric cost per 
function (area, size). This approach allows for a fair comparison and enables exploration and 
forward projection. At the same time, it has some pitfalls, as it may lead to the need of a large 
and very diverse set of benchmarking functions to be defined, if one wants to cover the whole 
space of AI. Another danger is the temptation to over-tune an implementation so that it excels 
on one or more of the benchmark functions (and just those), resulting in a lack of flexibility. 

There is no question that this topic needs a lot more reflection and thought. In the meantime, 
a heat-map identifying clear opportunities and their possible impact rather than a roadmap 
may be the right target to pursue. Also treating all applications under the same banner may 
not be the right approach. One possibility is to define a set of “power classes”, defined by the 
amount of energy/power available at an independent node. This influences the functionality 
that can be implemented for that node, and ultimately will drive the technology choices for 
its realization. At the edge, power classes could range from the autonomous vehicle (~10Watts) 
over the mobile (100mWatt-1Watt) to the IoT node (10’s of mWatts), the wearable (mWatts) 
and the implantable (μWatts).

One additional insight is that under certain conditions it is possible to formulate absolute 
upper or lower bounds for some metrics. For instance, the flow of information is bounded 
by Shannon’s law, independent from the medium, which could be a wire on an integrated 
circuit or an axon in the brain. Building on this, lower bounds on energy consumption have 
been defined for simple digital operations and analog functions such as A/D conversion. 
While currents solutions may be quite afar from those bounds, they present a sense of how 
efficient a solution is, and how much room for improvement exists (see, for instance, [Mur13]). 
Another interesting metric for “artificial” solutions is their effectiveness when compared to the 
solutions provided in nature. 

“A heat-map identifying 
clear opportunities and 
their possible impact 
rather than a roadmap 
may be the right target to 
pursue.”
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3D integration and interconnect

A vast majority of AI functions favor a tight integration between logic and memory providing 
wide interface lanes and low latency.  This immediately invokes a vision of some form of 3D 
integration with memory stacked on logic supported by dense vertical connectivity4.  This is 
part of an ongoing trend where 3D integration allows for increased improvement and addition 
of functionality, even in a context where horizontal ‘2D’ scaling is slowing down [Itr15]. In 
our opinion, this is one of the technology innovations that has the highest potential for 
major impact on the efficiency and footprint of Edge AI going forward. It requires a radical 
rethinking of the topology of both logic and memory and the interconnections between them. 
Fig. 8 presents a pictorial overview of the broad range of packaging and integration approaches 
that have become possible and/or available over the past years. They differ widely in terms 
of scalability, density of interconnect, reliability and cost.  Which approach makes sense really 
depends upon the intended application and the associated cost. Note that 3D integration 
not only applies to logic-memory integration, but also enables interconnect topologies that 
were exceedingly hard to accomplish before, or were just extremely inefficient. As an example, 
consider the very high fan-in requirements underlaying some neuromorphic architectures. 
Over and beyond, 3D integration also impacts the interface between sensing and computation, 
which also is crucial for many Edge applications. For example, it allows high-density imagers to 
be equipped with build-in processing and intelligence. 

Beyond pure integration, these technologies also open the door for options that were 
extremely hard to accomplish in the traditional CMOS processes. For instance, consider 
the possibility of dynamically reconfigurable interconnects, in which high-quality switching 
devices with high Roff and low Ron are embedded into the interconnect fabric. These switches 
could be controlled by non-volatile memory placed next or directly above or below. Thin 
film electronics provide a technology that enables such functionality already today, as was 
illustrated on a small scale in the IMEC NeurRAM3 prototype [Bal18] (see Fig. 9). Ultimately, one 
can even think further ahead, and imagine intelligent wiring structures where the resistivity 
varies dynamically in response to the data flowing through it.

While the opportunities are seemingly unbounded, one of the main challenges in this road-
mapping effort is to identify which approaches provide sufficient gains to offset the increased 
costs and under what conditions or constraints. This clearly points to the need for a system 
exploration environment that allows for a trade-off analysis supported by detailed modeling 
and precision adequate to give meaningful answers.

Fig. 8: Evolution in interconnect and packaging strategies [Bey19] Fig. 9: Thin-film reconfigurable interconnect

“A tight integration 
between logic and 
memory will have a major 
impact on the efficiency 
and footprint of Edge AI.”
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Memory

There is no question that memory plays a central role in the AI roadmap. Here, its roles and 
needs vary vastly from what we are familiar with in the domain of traditional Von Neuman-
based instruction-set processors. There, memory access is mostly governed by the fetching 
and storing of instructions and data in mostly irregular patterns. In the deep learning network 
arena, the number of instructions per function is limited. The main role of memory is to fetch 
weights and data in vast amounts structured in highly regular patterns, and to synchronize 
these flows of data. This means that memory controllers need to be rethought. But even 
more so, a re-organization of the memory architecture and topology is necessary. Many AI 
architectures benefit from or even require distributed – high bandwidth – low latency access. 
This can, for instance, be enabled by providing wide data-word interfaces, or by changing the 
modular structure of the memory. Some AI applications prosper from the availability of huge 
data sets close to the processing elements – think about an autonomous car having to navigate 
different scenarios in quick succession. Here density matters. This could be addressed by a 3D 
organization as discussed earlier.

Depending upon the chosen AI approach and implementation strategy, some more aggressive 
memory options may become attractive:

•	 Non-volatility is a desirable feature, especially in the case of quasi-stationary 
reconfigurable structures for always-on systems at the Edge that are mostly read 
and only occasionally rewritten. The major attraction is the low amount of leakage 
for latent memory. While of somewhat lower priority right now, it may become one 
of the most salient features in the longer term, providing the capability of “long 
term” reconfiguration at very low energy cost. As shown in Fig. 10, many non-volatile 
memory options are available with different requirements and constraints in terms of 
operational voltages, write and read times and resiliency.
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Fig. 10: imec memory and storage landscape [Fur18]

“Memory plays a central 
role in the AI roadmap. 
Its roles and needs vary 
vastly from traditional 
Von Neuman-based 
instruction-set processors.”
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•	 One of the prominent features of the brain is the intertwining of memory and 
logic. It therefore makes perfect sense for researchers to explore if this model also 
translates to physical computing platforms.  Called “in-memory computing”, functions 
like matrix multiplication, associative search and look-up tables are distributed 
throughout the memory (which could be SRAM or any type of emerging non-volatile 
memory). Main advantages are the reduction in data movement (data is local) as well 
as locality of operation. Realizations vary from the usage of non-volatile memories 
to store weights to analog distributed computation. The gains of the in-memory 
approach are potentially huge; however, it comes with challenges with respect to 
flexibility, programmability, accuracy, variability and scalability that cannot be ignored. 
Notwithstanding these concerns, research groups and start-up companies have been 
exploring a broad range of options, some of which may see fruition in the near future. A 
somewhat less adventurous approach that preserves some of the benefits but requires 
less change, is the “near-memory” approach, in which logic functions are implemented 
in the periphery, or in-between blocks of memory. This approach connects well with 
3D integration and stacking.

•	 To address the dynamically changing performance requirements (in terms of fault rates, 
and/or accuracy), a broad range of operating supply voltages may be needed (from 
0.3V to 1V)

Logic

Most of the hardware accelerators for AI advocated today focus on the efficient realization of 
“some” abstraction of the neuron function,

with N typically being a large number and f a sufficiently non-linear function. A collection of 
such neurons can be used to represent arbitrary functions (universal approximation theorem 
of neural nets). Many different approaches towards implementing the neuron function have 
been proposed, including digital neural processors, large array-vector multipliers, in-memory 
computing, analog multiplication, memristors, etc. 

However, the “neuron” is not the only logical element that should be pursued in the search 
of efficient edge AI. Other components may be equally interesting, including “memristors”, 
“synapse”-like devices, networks of non-linear oscillators (analog and digital), tunable 
delay lines, and other logical functions. 

In light of the fact that virtually all AI computation is based on statistics, special attention 
should be devoted to probabilistic and stochastic hardware, and functions/architectures 
that support statistical behavior [Sha19]. The compelling advantage of this approach is that 
computation could be performed at a much lower SNR, and hence be a lot more efficient (note: 
a typical brain synapse operates at an SNR of ~1!). Any such approach, be it based on statistical 
devices, analog hardware or random data representations such as occur in high-dimensional 
computing, must support implicit techniques to control the impact of variance on the system 
performance. These extend well beyond the familiar approaches used in the deterministic 
computing paradigms that have dominated the traditional semiconductor devices to date.

“One of the prominent 
features of the brain is the 
intertwining of memory 
and logic. Can this model 
also be translated to 
physical computing 
platforms?”
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In this context, materials and devices that have the potential to offer, by their intrinsic 
physics, efficient realizations of stochastic functions become particularly interesting. Examples 
include: (i)  insulator-metal-transition (IMT) Vanadium Dioxide, in which the inherent physical 
noise in the dynamics of switching dynamics provides the foundations for building FitzHugh-
Nagumo (FHN) neurons with thermal noise along with threshold fluctuations as precursors 
of bifurcation and ferroelectric doped-high-k materials, and, (ii) doped high-k ferroelectrics 
exploiting the particular nucleation-limited switching kinetics of the ferroelectrics to emulate 
Fe-FETs neuron-like integrate-firing activity.

Alternative technologies

Efficient realization of learning-based functions is not restricted to the electronic domain. After 
all, most of the inspiration in the world of machine learning come from biological systems that 
exploit an intriguing mixture of chemical and electrical mechanisms. Hence, other technologies 
could be a part of the solution. For instance, functions such as matrix multiplications and 
convolutional neural nets can be implemented using light as the prime carrier, inspiring the new 
field of neuromorphic photonics [Bie19]. Developments in silicon photonics, novel photonic 
materials and computational imaging could also help advance other computational models 
such as reservoir computing, discussed earlier. An example of such an all-optical approach 
is for instance presented by a company called LightOn [Lig19], which uses optical dispersion 
and speckle patterns as means of mapping data into high-dimensional spaces. Other carriers 
of data and computation such as magnetics and potentially, in the medium-to-long-term, 
quantum systems should not be ignored.  Finally, the field of synthetic biology is definitely 
something to keep an eye on. This is especially true now in the age of CRISPR [Cri19], in which 
active genome editing has become readily available and is enabling profound and controlled 
change of cellular and organism level functionality. It opens the door for the engineering of 
biological computational systems, while at the same time offering a deeper understanding of 
the underlying operational mechanisms.

Sensors and actuators

One possible abstraction of edge devices is to consider them as intelligent sensory/actuator 
systems. This abstraction holds for IoT and AR/VR devices, autonomous mobile entities, as well 
as wearables and implantables. From that perspective, sensing and its associated processing can 
be considered as being symbiotic. This sensor-centric perspective is often called “in-sensor 
computing” [Son15, Oza18]. A prime example thereof in nature can be found in the retina, 
where the neurons directly connected to the optical sensors perform various forms of feature 
extraction before sending the information over the optical nerve bundle. Different parts of 
our peripheral nervous system, such as the olfactory system, show similar hierarchical levels of 
processing, combining local in- or near-sensor processing of small patterns with global, brain-
based processing of the bigger picture. Note, however, that most sensor implementations 
require technologies that differ substantially from the CMOS technologies used for signal 
acquisition and computation. As such, tight integration of the two is non-trivial, yet required, 
and hence is the subject of active ongoing research. A number of options are enticing, such as 
the realization of both sensing and front-end AI in flexible electronics (e.g. thin film or printable 
electronics) or the tight integration of the two using 3D packaging. 

“Developments in 
silicon photonics, novel 
photonic materials and 
computational imaging 
could also help advance 
other computational 
models such as reservoir 
computing.”

“The realization of both 
sensing and front-end 
AI in flexible electronics 
(e.g. thin film or printable 
electronics) or the tight 
integration of the two 
using 3D packaging are 
enticing options to be 
considered.”
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Hardware-enabled security

One of the main challenges to computing in general and Edge AI in particular is to ensure 
security, safety and privacy – especially since many of the applications can be considered 
privacy-sensitive, essential or life-threatening if exploited in a malicious way. The constraints 
of the edge in terms of energy footprint demand solutions that provide inherent hardware-
based security mechanisms such as unique and unchangeable identifiers, authentication 
techniques, location-awareness, etc. These should be tightly intertwined with the machine 
learning functional blocks, to realize both functions jointly at minimal resource cost (area, 
power, memory). As always, security appears at the bottom of the list. Yet, in terms of 
importance, it should be on par with other constraints such as efficiency and cost, and 
hence deserves far more attention in the academic and the industrial world (A common quote 
in industry is that “security is something that everyone wants and no one wants to pay for”). 
In fact, the advent of AI everywhere should be considered as an opportunity. For instance, 
the novel computational paradigms that underlay many AI realizations are based on statistical 
representations and random projections that can be made to be unique for every single 
realization (for instance, by using random process variations or exploiting the randomness of 
nanoscale devices).  As another example, some of the most advanced encryption approaches 
such as homomorphic encryption [Hom19] are using computational models that are similar 
to machine-learning systems that use high-dimensional representations, and hence may 
benefit from implementation developments for the latter.

WHITE PAPER ARTIFICIAL INTELLIGENCE
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The application pull - moonshots to drive development

As stated earlier, building a true roadmap for AI technologies requires an application or a 
system perspective. Given the diversity of the functionality, goals and constraints of “AI at 
the Edge” no single application will do. One plausible approach would be to compile a list of 
meaningful and representative functions or sub-systems to serve as benchmarks. While this is 
definitely commendable and will happen anyhow, benchmarks tend to be backwards looking, 
create tunnel vision, and miss the overall system settings and constraints. In fact, they often 
even stifle innovation.

A more effective approach to foster innovation is to identify one or more long-term ambitious 
goals and visions as “moonshots”. Technologies (at any level of the stack) can then be measured 
in terms of how they advance the state-of-the-art towards reaching the moonshot goals. At 
the workshop held in Leuven on September 17, 2019, we selected this approach as being the 
one that would present the best opportunities to advance the field in a forward looking, yet 
structured and measurable way. In addition, it was judged that a single moonshot or compelling 
long-term driver would be far from sufficient to cover the full spectrum of Edge AI applications. 
As such, we have selected a set of three, each of which unique, exciting and audacious.

1. The introspector: towards future Human Avatars 
for Healthcare

In 2011, Qualcomm launched the Tricorder competition, targeting the development of an 
automatic non-invasive health diagnostics system able to autonomously diagnose 13 medical 
conditions (12 diseases and the ‘absence of conditions’) in a single portable package that weighs 
no more than 5 pounds [Wikipedia]. As no single team managed to fulfill all goals, a reduced 
price was awarded in 2017. 

Fast forward to 2030 and assume a network of sensors that could be embedded in our daily 
living environment, or worn on the body, implanted inside, or traveling through the body. 
We call it the “introspector system”. The streams of information would provide a continuous 
picture of the health and the state of the human body and help to diagnose early-on potential 
risks or diseases (metabolic, cardiovascular, mental). It may also track everything you have been 
exposed to over your complete lifespan (your “exposome”). For privacy reasons, most of the 
data analysis would be done locally – either next to the sensors or on some wearable device. 
However, the introspector would also build on the immense amount of data and knowledge 
available in the Cloud. The combined knowledge of all the avatars provides a model of 
collective learning. In more advanced versions, feedback in the form of actuation/stimulation/
drug delivery can be added and used to perform fast response/correction.

In a sense, the system would serve as preventive/predictive health avatar, enabling 
every citizen access to personalized healthcare, healthy lifestyle and disease prevention. 
The personalization of medicine presents an approach that is proactive, promotes healthy 
living, prevents disease, and treats disease with precision, while aiming to provide the right 
treatment at the right time to the right patient. The Human Avatar vision [Heu18] is based on 
integrative technological and digital data approaches, combined with ethics and behavioral 
science. Building a Human Avatar involves combining both AI hardware and software, and 

“The most advanced 
omics, smart sensors, 
nanomedicine, advanced 
imaging and body-on-
chip technologies are 
needed to realize true 
experimental physical 
organ avatars.”
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data generation and processing technologies (Fig. 11): it will need the most advanced omics, 
smart sensors (wearables and implantables), nanomedicine, advanced imaging and body-on-
chip and technologies to realize true experimental physical organ avatars. These will serve 
as representative models at the micro/nano-level, and facilitate deep understanding of the 
function and interaction of organs and the mechanisms underlying their diseases, and they will 
be used as test models for disease prevention and drug treatments. It will lead to the design 
and development of the Edge AI components of a specific data infrastructure and subclass 
of the Internet of Things called the Internet of Healthcare (IoH). In IoH, it will enable Edge AI 
embedded security, privacy and ethical rules.

Physical human avatar
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Fig. 11: Human Avatar Platform, as proposed by Health EU, to revolutionize personalized and preventive healthcare, supported by data-generator technology platforms and models 
based on big data [Source: HEU].
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2. The ultimate teacher

From a different outwards-looking perspective, similar networks of sensors and actuators can 
serve to augment and extend the functions of the human body and fundamentally change 
how we perceive information from and act on the physical environment around us. Sensory 
information that extends far beyond what we can conceive today can be made available and 
transformed so that it can be mapped onto our existing seven senses, couple directly into the 
brain or the nervous system, or be fed to our digital twin existing in the cyberworld. Similarly, 
motor output signals can be observed and translated into direct action in the environment 
(control a car, a drone or an exoskeleton), project imaginary speech, or provide direct 
stimulation to the body. Prototype systems of this class have been demonstrated or are under 
exploration today. An example of such are prostheses controlled by a brain-machine interface. 
AR/VR systems fall in this class as well, but current incarnations still lack the feedback loop. 

To leap forward, consider a wearable system that helps you to learn physical or mental tasks in 
a much faster way by providing instant evaluation of your actions in light of the context you 
are in, and help you improve on a task by gentle correction. Consider e.g. trying to learn how 
to play golf. Currently, the feedback loop is very slow – it requires a teacher evaluating your 
performance and giving verbal feedback. Instead information from sensors in the club, from 
body-worn motion-tracking sensors and cameras, ball tracking devices, etc. in combination 
with information extracted from observing similar sensors on expert players, can tell or show 
you how and where to improve.  Even more, a gentle nudge provided using tactile feedback 
on the arms or hands on the arm can help adjust positioning and swing. In a first instance, 
the ultimate teacher could be a smart AR/VR device coupling into a set of sensors/devices 
worn on the body or embedded in the environment. In later stages, more and more actuators 
and even brain implants can be added. This is just an example of how we could use edge AI 
to improve on how we as humans deal with novelty. Many other options can be envisioned: 
helping surgeons during complicated surgeries, learning how to control a really complex 
machine (or a group of them working in concert), or just learning to play the piano. 

In the end, this may have a profound impact on how we learn and acquire skills in the future, 
and even, at a deeper level, help us understand how we learn in the first place.
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“Consider a wearable 
system that helps you to 
learn physical or mental 
tasks in a much faster 
way by providing instant 
evaluation of your actions 
in light of the context you 
are in. ”
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3.	Swarms on a mission

Imagine a group (swarm) of autonomous drones working actively together to fulfill a given 
mission or to meet a certain objective. This could be the locating of survivors after a 
building has collapsed, the mapping of a fast-moving wild fire and the notification of people 
that may be impacted, the relocation of a number of objects been a selection of source 
and destinations in a warehouse, etc. While all these tasks are in a sense possible today, all 
mission planning and task allocation is done in a centralized way, which creates a bottleneck 
and a single point of failure. An alternative is to have the mobiles work together to realize 
decentralized decision making and optimize the task distribution based on local observations 
and sharing of information. This is a perfect example of the ADD functionality with the extra 
dimension of information sharing between the nodes (addressing questions such as how much 
information should be shared). 

This driver addresses a broad range of interesting AI topics, such as dealing with heterogeneous 
sensors, adaptation to changing circumstances and environments, trajectory planning based 
on incomplete information, and informed decision making.

 

The need for an exploration methodology

As hopefully became apparent over the course of this document, enabling Edge AI to acquire 
full “Automatic Decisioning System” capabilities, and to potentially come close to human-like 
functionality, will require progress on many fronts, especially in light of the stringent energy, 
size, robustness and security constraints. It is also obvious that reaching the stated goals 
requires innovation and optimization over all the layers of the stack: from the application 
over the compiler and scheduler, the architecture to the circuit, device and integration levels. 
More than ever, technology choices will be dominated by system-level considerations and vice 
versa. The number of options at all levels is large, and experimenting with all of them is terribly 
expensive in both cost and time. The fact that the answer will most likely be a combination 
of heterogeneous sub-modules with different flavors does not simplify the design task either.

Hence the need for an environment that supports both early and detailed exploration, 
and provides insights in what options in the global design space make sense. Back-of-the-
envelope modeling is one option that is often used, but that in general provides unreliable 
and optimistic estimates, as it ignores parasitics, variations and imperfections. Therefore, an 
end-to-end framework is required that enables a co-exploration and co-optimization from 
the system to the device and integration levels with the realism of actual implementation. 

“Have the mobiles work 
together to realize 
decentralized decision 
making and optimize the 
task distribution based 
on local observations and 
sharing of information.”
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It is based on experimentally-validated realistic models of the various components and 
integration (packaging) technologies. Using built-in generators and extractors, detailed 
models of variations and imperfections can be derived. Starting from high-level templates of 
computational architectures and algorithmic dataflows, the framework would provide tools 
to map algorithms into architectures and designs. The combination of all these tools in a 
common framework would allow for estimation, simulation, and parametric and sensitivity 
analysis of the various options available, hence providing full exploration and what-if 
functionality. Observe that various attempts were made over the past decades to develop 
a system-level exploration framework of this nature, but most of them failed for a number 
of reasons such as an over-constrained system model, lack of the right translational tools or 
inadequate hardware models. More recently though, the feasibility and prospective benefits 
of true system-technology co-optimization environments were effectively demonstrated for 
some constrained architectural platforms such as a single [Kom18] or multicore processor 
[Aly19] (Fig. 12).

It is clear that no single player on her/his own can provide the full knowledge and skill set 
needed for the creation of such a framework. It hence requires a consortium of players to come 
together, including application experts, architects, circuit specialists, technologists and design 
tool experts.  It is up to the community to help create the libraries and models for meaningful 
building blocks, interconnect approaches, architectural models and block generators, system-
level descriptors and compilers. However, if successful the availability of such an exploration 
environment could help tremendously in expediting innovation and creativity, leading to 
entirely new computing platforms and a truly cognitive edge. 
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Fig 12: N3XT system-technology exploration environment for multicore processor systems [Aly19]
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Recommendations
Over the course of this paper, we have enumerated a set of alternatives and options 
that can lead to realization of true Edge AI over the coming decade(s) – with the aim 
of mimicking, augmenting, and potentially even rivaling the capabilities and the prowess 
of human intelligence. Making this vision come to fruition will require a set of concrete 
actions and concerted efforts from a broad team of players, representing all parts of the 
equation. Given the outlandish size of the worldwide competition, the exploitation of 
unique strengths – such as the ready access to a broad range of beyond-state-of-the-art 
technologies – is of essence. There is no need to try to compete in domains where other 
players already have a sizable lead.  This will however require the taking of substantial 
risks and the making of informed bets – just chasing all possible options is an expensive 
and non-rewarding exercise. 

To that effect, we recommend that the following actions be undertaken most specifically 
by the players that contributed to this white paper, but with outreach to the more global 
community if needed. A set of concrete milestones needs be defined for each of these.

	• Plan for various partners to engage in the moonshots. This entails the concrete 
definition of the overall functionality to be achieved, the identification of the 
components and the possible solution space, the selection and/or collection of 
meaningful data sets, and the outlining of possible prototypes to be built.

	• Definition of a meaningful set of metrics of relevance to Edge AI (with major 
focus on energy efficiency and sustainability). This will require the selection of 
a set of representative functions/benchmarks, some of which can be collected 
from the public domain, others from interested partners. Most preferably, though, 
they should emerge from or be part of the identified moonshots.

	• Develop plan and roadmap for at-scale availability of the technologies identified 
in this white paper. This would include the development of detailed models as 
well as parameterizable generators to be used in the exploration exercise.

	• Support a continuous evaluation of emerging AI and ML approaches and 
concepts (and alternative approaches as may arise over time). This is especially of 
importance for Edge AI, where efficiency and compactness if of essence. We are 
still some sizable distance away from what biology can do. This effort would likely 
be performed in collaboration with universities.

	• Develop exploration methodology to evaluate joint impact of systems and 
technologies. This is a substantial effort that will engage a broad selection of 
partners.

	• Develop a strategy to provide security, safety and privacy within Edge AI, and 
how technology innovation can play a role in this. Similarly, packaging can play a 
role in the creation of secure hardware and sovereignty.

 

WHITE PAPER ARTIFICIAL INTELLIGENCE
AI AT THE EDGE - A ROADMAP24



WHITE PAPER ARTIFICIAL INTELLIGENCE
AI AT THE EDGE - A ROADMAP 25

Recommended background reading

End notes

1. 	 Ion Stoica et al, A Berkeley View of Systems Challenges for AI, https://arxiv.org/pdf/1712.05855.pdf (2019)

2. 	 Y. Gil and B. Selman, A 20-Year Community Roadmap for Artificial Intelligence Research in the US, Computing Community Consortium (CCC), 

	 https://arxiv.org/abs/1908.02624 (August 2019)

3. 	 Beijing Innovation Center for Future Chips, White Paper on AI Chip Technologies, 2018

4. 	 Many Authors, Artificial Intelligence Research Flanders, 2019

5. 	 Y. LeCun, Deep Learning Hardware: Past, Present and Future, Keynote ISSCC 2019.

6.	 HJ Yoo, Intelligence on Silicon: From DNN Accelerators to Brain Mimicking AI-SOCs, Keynote ISSCC 2019.

1  	 This number is an estimate. It is based on estimations of computational equivalence of brain functions that are relatively well understood  (Kur05]), and their energy footprint. 

	 Hence it should be interpreted cautiously. The reality may actually be worse.

2  	 This overview is by no means exhaustive, and covers only the most prominent techniques currently in use.

3 	 This is not a new observation. Creating roadmaps has already become a lot more complicated with the diversification of the application domains addressed by semiconductor 

	 technology. The times that everything could be measured by instruction processors and their memory hierarchy have been over for at least 15 years. AI just adds another trace.

 4 	 After all, the brain with its dense interconnect networks and its merged memory/logic structure has long chosen a 3D integration approach.
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