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How human–AI feedback loops alter 
human perceptual, emotional and social 
judgements
 

Moshe Glickman    1,2   & Tali Sharot1,2,3 

Artificial intelligence (AI) technologies are rapidly advancing, enhancing 
human capabilities across various fields spanning from finance to medicine. 
Despite their numerous advantages, AI systems can exhibit biased 
judgements in domains ranging from perception to emotion. Here, in a 
series of experiments (n = 1,401 participants), we reveal a feedback loop 
where human–AI interactions alter processes underlying human perceptual, 
emotional and social judgements, subsequently amplifying biases in humans. 
This amplification is significantly greater than that observed in interactions 
between humans, due to both the tendency of AI systems to amplify biases 
and the way humans perceive AI systems. Participants are often unaware of 
the extent of the AI’s influence, rendering them more susceptible to it. These 
findings uncover a mechanism wherein AI systems amplify biases, which 
are further internalized by humans, triggering a snowball effect where small 
errors in judgement escalate into much larger ones.

Interactions between humans and artificial intelligence (AI) systems 
have become prevalent, transforming modern society at an unprece-
dented pace. A vital research challenge is to establish how these interac-
tions alter human beliefs. While decades of research have characterized 
how humans influence each other1–3, the influence of AI on humans may 
be qualitatively and quantitatively different. This is partially because 
AI judgements are distinct from human judgements in several ways 
(for example, they tend to be less noisy4) and because humans may 
perceive AI judgements differently from those of other humans5,6. In 
this Article, we show how human–AI interactions impact human cog-
nition. In particular, we reveal that when humans repeatedly interact 
with biased AI systems, they learn to be more biased themselves. We 
show this in a range of domains and algorithms, including a widely used 
real-world text-to-image AI system.

Modern AI systems rely on machine learning algorithms, such as 
convolutional neural networks7 (CNNs) and transformers8, to iden-
tify complex patterns in vast datasets, without requiring extensive 
explicit programming. These systems clearly augment human natural 
capabilities in a variety of domains, such as health care9–11, education12, 

marketing13 and finance14. However, it is well documented that AI sys-
tems can automate and perpetuate existing human biases in areas 
ranging from medical diagnoses to hiring decisions15–17, and may even 
amplify those biases18–20. While this problem has been established, 
a potentially more profound and complex concern has been largely 
overlooked until now. As critical decisions increasingly involve col-
laboration between AI and humans (for example, AI systems assist-
ing physicians in diagnosis and offering humans advice on various 
topics21,22), these interactions provide a mechanism through which not 
only biased humans generate biased AI systems, but biased AI systems 
can alter human beliefs, leaving them more biased than they initially 
were. This possibility, predicted from a synthesis of bias amplification 
and human feedback learning, holds substantial implications for our 
modern society, but has not yet been empirically tested.

Bias, defined as a systematic error in judgements, can emerge in 
AI systems primarily due to inherent human biases embedded in the 
datasets the algorithm was trained on (‘bias in bias out’23; see also ref. 24)  
and/or when the data are more representative of one class than the other25–27.  
For example, generative AI systems such as text-to-image technologies 
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Humans exhibit a small judgement bias. Fifty participants performed 
an emotion aggregation task (adapted from refs. 41–44). On each of 100 
trials, participants were presented briefly (500 ms) with an array of 12 
faces and were asked to report whether the mean emotion expressed 
by the faces in the array was more sad or more happy (Fig. 1a; level 1). 
The faces were sampled from a dataset of 50 morphed faces, created by 
linearly interpolating between sad and happy expressions (Methods). 
Based on the morphing ratio, each face was ranked from 1 (100% sad 
face) to 50 (100% happy face). These rankings were closely associated 
with participants’ own rankings of each face when observed one by 
one (b = 0.8; t(50) = 26.25; P < 0.001; see Supplementary Results). We 
created 100 unique arrays of 12 faces for each participant. The average 
ranking of the 12 faces in half of the arrays was smaller than 25.5 (thus, 
the array was more sad) and greater than 25.5 in the other half (thus the  
array was more happy).

Bias in this task was defined as the difference between the aver-
age responses of a participant across all trials and the actual average. 
The actual average in the task was 0.5, as responses were coded as 
either 1 (more sad) or 0 (more happy), and exactly half of the trials 
were more sad and half were more happy. Mathematically, the bias 
is expressed as:

Bias = 1
n

n
∑
i=1

Ci − 0.5

Where n denotes the total number of data points and Ci denotes the 
classification assigned to each data point (Ci = 1 for a more sad classifi-
cation and Ci = 0 for a more happy classification). A positive bias indi-
cates a tendency towards classifying responses as more sad, whereas 
a negative bias suggests a leaning towards classifying responses as 
more happy. For example, if a participant were to classify 0.7 of the 
arrays as more sad, their bias would be 0.7 − 0.5 = 0.2, whereas if they 
were to classify 0.3 of the arrays as more sad, their bias would be 
0.3 − 0.5 = −0.2.

Consistent with previous studies showing that interpretation of 
an ambiguous valence is more likely to be negative under short encod-
ing times45,46, participants showed a slight but significant tendency to 
report that the faces were more sad. In particular, they categorized 
53.08% of the arrays as more sad, which is a greater proportion than 
would be expected by chance (permutation test against 50%: P = 0.017; 
d = 0.34; 95% confidence interval (CI)more sad = 0.51 to 0.56; green circle in 
Fig. 1e; see also Supplementary Results for estimation of the bias by psy-
chometric function analysis). The bias was much larger in the first block 
than subsequent blocks (Mblock 1 = 56.72%; Mblocks 2–4 = 51.87%; permuta-
tion test comparing the first block with the rest: P = 0.002; d = 0.46; 
95% CI = 0.02 to 0.08), suggesting that the participants corrected  
their bias over time.

and large language models learn from available data on the Internet, 
which being generated by humans contains inaccuracies and biases, 
even in cases where the ground truth exists. As a result, these AI systems 
end up reflecting a host of human biases (such as cognitive biases28,29, as 
well as racial and gender biases30). When humans subsequently interact 
with these systems (for example, by generating images or text), they 
may learn from them in turn. Interaction with other AI technologies that 
exhibit bias (including social bias), such as CNN-based facial recogni-
tion algorithms31, recommendation systems32, hiring tools33 and credit 
allocation tools34, may also induce similar circularity. Moreover, human 
biases can be amplified even when individuals are not directly interacting 
with an AI system, but merely observing its output. Indeed, an estimated  
15 billion AI-generated images circulate online35, which users routinely 
consume passively on social media, news websites and other digital plat-
forms. As a result, the impact of AI-generated content on human biases 
may extend beyond the immediate users of these systems.

Here, over a series of studies, we demonstrate that when humans 
and AI interact, even minute perceptual, emotional and social biases 
originating either from AI systems or humans leave human beliefs 
more biased, potentially forming a feedback loop. The impact of AI 
on humans’ beliefs is gradually observed over time, as humans slowly 
learn from the AI systems. We uncover that the amplification effect is 
greater in human–AI interactions than in human–human interactions, 
due both to human perception of AI and the unique characteristics 
of AI judgements. In particular, AI systems may be more sensitive to 
minor biases in the data than humans due to their expansive com-
putational resources36 and may therefore be more likely to leverage 
them to improve prediction accuracy, especially when the data are 
noisy37. Moreover, once trained, AI systems’ judgements tend to be 
less noisy than those of humans4. Thus, AI systems provide a higher 
signal-to-noise ratio than humans, which enables rapid learning by 
humans, even if the signal is biased. In fact, if the AI is perceived as 
being superior to humans6,38,39 (but see ref. 40), learning its bias can 
be considered perfectly rational. Amplification of bias only occurs 
if the bias already exists in the system: when humans interact with an 
accurate AI system, their judgements are improved.

Results
Human–AI feedback loops can amplify human’s biases
We begin by collecting human data in an emotion aggregation task in 
which human judgement is slightly biased. We then demonstrate that 
training an AI algorithm on this slightly biased dataset results in the 
algorithm not only adopting the bias but further amplifying it. Next, 
we show that when humans interact with the biased AI, their initial bias 
increases (Fig. 1a; human–AI interaction). This bias amplification does 
not occur in an interaction including only human participants (Fig. 1b; 
human–human interaction).

Fig. 1 | Human–AI interaction creates a feedback loop that makes humans 
more biased (experiment 1). a, Human–AI interaction. Human classifications 
in an emotion aggregation task are collected (level 1) and fed to an AI algorithm 
(CNN; level 2). A new pool of human participants (level 3) then interact with the 
AI. During level 1 (emotion aggregation), participants are presented with an 
array of 12 faces and asked to classify the mean emotion expressed by the faces as 
more sad or more happy. During level 2 (CNN), the CNN is trained on human data 
from level 1. During level 3 (human–AI interaction), a new group of participants 
provide their emotion aggregation response and are then presented with the 
response of an AI before being asked whether they would like to change their 
initial response. b, Human–human interaction. This is conceptually similar to the 
human–AI interaction, except the AI (level 2) is replaced with human participants. 
The participants in level 2 are presented with the arrays and responses of the 
participants in level 1 (training phase) and then judge new arrays on their own as 
either more sad or more happy (test phase). The participants in level 3 are then 
presented with the responses of the human participants from level 2 and asked 
whether they would like to change their initial response. c, Human–AI-perceived-
as-human interaction. This condition is also conceptually similar to the human–AI 

interaction condition, except participants in level 3 are told they are interacting 
with another human when in fact they are interacting with an AI system (input: AI; 
label: human). d, Human–human-perceived-as-AI interaction. This condition is 
similar to the human–human interaction condition, except that participants in 
level 3 are told they are interacting with AI when in fact they are interacting with 
other humans (input: human; label: AI). e, Level 1 and 2 results. Participants in level 
1 (green circle; n = 50) showed a slight bias towards the response more sad. This 
bias was amplified by AI in level 2 (blue circle), but not by human participants in 
level 2 (orange circle; n = 50). The P values were derived using permutation tests. 
All significant P values remained significant after applying Benjamini–Hochberg 
false discovery rate correction at α = 0.05. f, Level 3 results. When interacting with 
the biased AI, participants became more biased over time (human–AI interaction; 
blue line). In contrast, no bias amplification was observed when interacting with 
humans (human–human interaction; orange line). When interacting with an  
AI labelled as human (human–AI-perceived-as-human interaction; grey line) or 
humans labelled as AI (human–AI-perceived-as-human interaction; pink line), 
participants’ bias increased but less than for the human–AI interaction 
 (n = 200 participants). The shaded areas and error bars represent s.e.m.
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AI trained on biased human data amplifies the bias. Next, we used 
a CNN7 to classify each array of faces into more happy or more sad. As 
detailed below, the CNN amplified the classification bias observed in 
the human participants (see Methods for further details of the model).

First, to test the accuracy of the model, we trained it on the 5,000 
arrays that were presented to the participants in level 1 (5,000 arrays = 50 
participants × 100 arrays), with class labels based on the objective rank-
ing scores of the arrays (that is, not the human labels). The model was 
then evaluated on a 300 out-of-sample test set and showed a classifica-
tion accuracy of 96%, suggesting that it was highly accurate and did not 
show a bias if trained on non-biased data (see Table 1). Next, we trained 
the model on class labels defined based on the human classification 
(5,000 samples of arrays; Fig. 1a) and evaluated it on 300 arrays in an 
out-of-sample test set. The model classified the average emotion as 
more sad in 65.33% of the cases, despite only 50% of the arrays being 
more sad. This number was significantly greater than would be expected 
by chance (permutation test against 50%: P < 0.001; 95% CImore sad = 0.60 
to 0.71; blue circle in Fig. 1e) and significantly greater than the bias 
observed in the human data (level 1), which was only 53% (permutation 
test: P < 0.001; d = 1.33; 95% CI = 0.09 to 0.14; Fig. 1e). In other words, 
 the AI algorithm greatly amplified the human bias embedded in the data 
it was trained on. Similar results were obtained for CNNs with different 
architectures, including ResNet50 (ref. 47; see Supplementary Results).

A possible reason for the bias amplification of the AI is that it exploits 
biases in the data to improve its prediction accuracy. This should happen 
more when the data are noisy or inconsistent. To test this hypothesis, we 
retrained the model with two new sets of labels. First, we used non-noisy 
labels (that is, based on the objective ranking scores of the arrays), but 
induced a minor bias by switching 3% of the labels. Thus, 53% of the labels 
were classified as more sad. Second, we used very noisy labels (random 
labels), in which we also induced a 3% bias. If the bias amplification were 
due to noise, the bias of the latter model should be higher than that of the 
former. The results confirmed this hypothesis (Table 1): the average bias 
of the model trained on the accurate labels with a minor bias was exactly 
3%, whereas the average bias of the model trained on the random labels 
with a bias of 3% was 50% (that is, the model classified 100% of arrays as 
more sad). These results indicate that the bias amplification of the CNN 
model is related to the noise in the data.

Interaction with biased AI increases human bias. Next, we set out to 
examine whether interacting with the biased AI algorithm would alter 
human judgements (Fig. 1a; level 3). To this end, we first measured par-
ticipants’ baseline performance on the emotion aggregation task for 
150 trials, so that we could compare their judgements after interacting 
with the AI versus before. As in level 1, we found that participants had 
a small bias at first (Mblock 1 = 52.23%), which decreased in subsequent 
blocks, (Mblocks 2–5 = 49.23%; permutation test testing the first block 
against the rest of the blocks: P = 0.03; d = 0.31; 95% CI = 0.01 to 0.06). 
The next question was whether interacting with AI would cause the bias 
to reappear in humans and perhaps even increase.

To test this hypothesis, on each of 300 trials, participants first 
indicated whether the array of 12 faces was more sad or more happy. 

They were then presented with the response of the AI to the same array 
(participants were told that they “will be presented with the response of 
an AI algorithm that was trained to perform the task”). They were then 
asked whether they would like to change their initial response or not 
(that is, from more sad to more happy or vice versa). The participants 
changed their response on 32.72% (±2.3% s.e.) of the trials in which the 
AI provided a different response and on 0.3% (±0.1% s.e.) of the trials in 
which the AI provided the same response as they did (these proportions 
are significantly different: permutation test: P < 0.001; d = 1.97; 95% 
CI = 0.28 to 0.37). Further study (Supplementary Experiment 1) showed 
that when not interacting with any associate, participants changed their 
decisions only on 3.97% of trials, which was less than when interact-
ing with a disagreeing AI (permutation test: P < 0.001; d = −2.53; 95% 
CI = −0.57 to −0.42) and more than when interacting with an agreeing 
AI (permutation test: P < 0.001; d = 0.98; 95% CI = 0.02 to 0.05).

The primary question of interest, however, was not whether par-
ticipants changed their response after observing the AI’s response. 
Rather, it was whether over time their own response regarding an array 
(before observing the AI’s response to that specific array) became more 
and more biased due to previous interactions with the AI. That is, did 
participants learn to become more biased over time?

Indeed, whereas in the baseline blocks participants classified on 
average only 49.9% (±1.1% s.e.) of the arrays as more sad, when interacting 
with the AI this rate increased significantly to 56.3% (±1.1% s.e.; permu-
tation test for interaction blocks against baseline: P < 0.001; d = 0.84; 
95% CImore sad = 0.54 to 0.59). The learned bias increased over time: in the 
first interaction block it was only 50.72%, whereas in the last interaction 
block it was 61.44%. This increase in bias was confirmed by a linear mixed 
model predicting a higher rate of more sad classifications as the block 
number (a fixed factor) increased, with random intercepts and slopes at 
the participant level (b = 0.02; t(50) = 6.23; P < 0.001; Fig. 1f).

These results demonstrate an algorithmic bias feedback loop; 
training an AI algorithm on a set of slightly biased human data results in 
the algorithm amplifying it. Subsequent interactions of other humans 
with this algorithm further increase the humans’ initial bias levels, 
creating a feedback loop.

Human–human interactions did not amplify bias
Next, we investigated whether the same degree of bias contagion occurs 
in interactions involving only humans. To this end, we used the same 
interaction structure as above, except the AI system was replaced with 
human participants (Fig. 1b).

Humans exhibit a small judgement bias. The responses used in the 
first level of the human–human interaction were the same as those 
used in the human–AI interaction described above.

Humans trained on human data do not amplify bias. Conceptually 
similar to AI algorithm training, here we aimed to train humans on 
human data (Fig. 1b; level 2). The participants were presented with 
100 arrays of 12 faces. They were told they would be presented with the 
responses of other participants who performed the task before. For each 

Table 1 | Accuracy and bias in the training data and CNN classifications

Labels Objective ranking 
(accuracy = 100%; 
bias = 0%)

Objective ranking + 
minor bias 
(accuracy = 97%; 
bias = 3%)

Participant  
classifications 
(accuracy = 63%; 
bias = 3%)

Random labels + minor bias 
(accuracy = 50%; 
bias = 3%)

Accuracy − objective labels 96% 94% 66% 50%

Accuracy – training labels 96% 92% 69% 53%

Bias 1% 3% 15% 50%

Training was conducted using four different label sets: (1) objective (based on morphing ranking scores); (2) objective with a 3% bias; (3) participant classifications; and (4) random labels with a 
3% bias. The predictions of the model were assessed on an out-of-sample test set of 300 arrays. Accuracy and bias were evaluated with respect to the objective labels and with respect to the 
labels the models were trained on (training labels).
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of the 100 arrays, they observed the response of a pseudo-randomly  
selected participant from level 1 (see Methods for further details). 
Thereafter, they judged ten new arrays on their own (as either more 
sad or more happy). To verify that the participants attended to the 
responses of the other level 1 participants, they were asked to report 
them on 20% of the trials (randomly chosen). Participants who gave 
an incorrect answer on more than 10% of the trials (and thus were not 
attending the task; n = 14), were excluded from the experiment.

Participants characterized the arrays as more sad 54.8% of the 
time, which is more than would be expected by chance (permutation 
test against 50%: P = 0.007; d = 0.41; 95% CImore sad = 52 to 58%). Criti-
cally, this result did not differ from that of level 1 human participants  
(permutation test level 1 humans versus level 2 humans: P = 0.43; 
d = 0.11; 95% CI = −0.02 to 0.06; Fig. 1e), but was significantly lower 
than for the AI algorithm, which characterized 65.13% of the arrays as 
more sad (permutation test level 2 humans against level 2 AI: P < 0.001; 
d = 0.86; 95% CI = −0.07 to −0.013; Fig. 1e). This difference was unlikely 
to have been driven by variations in training sample sizes, as the effect 
was observed even when AI and human participants were trained on 
identical datasets (Supplementary Experiment 2). Furthermore, the 
results were generalized to a different training method, in which par-
ticipants were incentivized to actively predict the responses of other 
participants (Supplementary Experiment 3).

In conclusion, unlike the AI, human bias was not amplified after 
being trained on biased human data. This is not surprising, as the level 
of bias participants in level 2 naturally exhibit is probably the same as 
the one they were trained on. Moreover, unlike AI systems, humans 
base their judgements on factors that go beyond the training session, 
such as previous experiences and expectations.

Human–human interaction does not increase bias. Next, we exposed 
a new pool of participants (n = 50) to the judgements of humans from 
level 2. The task and analysis were identical to those described for 
level 3 of the human–AI interaction (except, of course, participants 
were interacting with humans, which they were made aware of; Fig. 1b).

Before being exposed to the other human’s response, participants 
completed five baseline blocks. As in levels 1 and 3 (human–AI interac-
tion), participants showed a significant bias during the first block (Mblock 

1 = 53.67%) which disappeared over time (Mblocks 2–5 = 49.87%; permuta-
tion test for the first baseline block against the rest of the baseline 
blocks: P = 0.007; d = 0.40; 95% CI = 0.01 to 0.06).

Next, participants interacted with other human participants 
(human–human interaction; level 2). As expected, participants changed 
their classification more when the other participants disagreed with 
them (11.27 ± 1.4% s.e.) than when they agreed with them (0.2 ± 0.03% s.e.) 
(permutation test comparing the two: P < 0.001; d = 1.11; 95% CI = 0.08 
to 0.14) and less than when interacting with a disagreeing AI (which was 
32.72%; permutation test comparing the response change when interact-
ing with a disagreeing AI compared with interacting with a disagreeing 
human: P < 0.001; d = 1.07; 95% CI = 0.16 to 0.27).

Importantly, there was no evidence of learned bias in the human–
human interaction (Fig. 1f). Classification rates were no different when 
interacting with other humans (Mmore sad = 51.45 ± 1.3% s.e.) than baseline 
(50.6 ± 1.3% s.e.) (permutation test for interaction blocks against base-
line: P = 0.48; d = 0.10; 95% CImore sad = −0.01 to 0.03) and did not change 
over time (b = 0.003; t(50) = 1.1; P = 0.27).

Taken together, these results indicate that human bias is signifi-
cantly amplified in a human–AI interaction, more so than in interactions 
between humans. These findings suggest that the impact of biased AI 
systems extends beyond their own biased judgement to their ability to 
bias human judgement. This raises concerns for human interactions 
with potentially biased algorithms across different domains.

AI’s output and human perception of AI shape its influence. A question  
that arises is whether participants became more biased when 

interacting with the AI system compared with humans because the AI 
provided more biased judgements, because they perceived the AI sys-
tem differently than other humans, or both. To address this question, 
we ran two additional iterations of the experiment. In the first iteration 
(AI perceived as human), participants interacted with an AI system 
but were told they were interacting with another human participant 
(Fig. 1c). In the second iteration (human perceived as AI), participants 
interacted with an AI system but were told they were interacting with 
another human participant (Fig. 1d).

To this end, new pools of participants (n = 50 per condition)  
were recruited. First, they performed the baseline test described above and 
then they interacted with their associate (level 3). When interacting with  
the AI (which was believed to be a human) participants’ bias increased over 
time: in the first interaction block it was only 50.5%, whereas in the last 
interaction block it was 55.28% (Fig. 1f). The increase in bias across blocks  
was confirmed by a linear mixed model predicting a higher rate of 
more sad classifications as the block number (a fixed factor) increased, 
with random intercepts and slopes at the participant level (b = 0.01; 
t(50) = 3.14; P < 0.001). Similar results were obtained for the human–
human-perceived-as-AI interaction. The bias increased across blocks (from 
49.0% in the first block to 54.6% in the last), as was confirmed by a linear 
mixed model (b = 0.01; t(50) = 2.85; P = 0.004; Fig. 1f). In both cases, the bias 
was greater than at baseline (human–AI perceived as human: Mbias = 3.85 
(permutation test comparing with baseline: P = 0.001; d = 0.49; 95% 
CI = 0.02 to 0.06); human–human perceived as AI: Mbias = 2.49 (permutation  
test comparing with baseline: P = 0.04; d = 0.29; 95% CI = 0.01 to 0.05)).

Was the induced bias a consequence of the type of input (AI ver-
sus human) or the perception of that input (perceived as AI versus 
perceived as human)? To investigate this, we submitted the induced 
bias scores (the percentage of more sad judgements minus the base-
line percentage of more sad judgements) into a 2 (input: AI versus 
human) × 2 (label: AI versus human) analysis of variance (ANOVA) with 
time (blocks 1–6) as a covariate (Fig. 1f). The results revealed interac-
tions between input and time (F(4.55, 892.35) = 3.40; P = 0.006) and 
between label and time (F(4.55, 892.35) = 2.65; P = 0.026). In addition, 
there were main effects of input (F(1, 196) = 9.45; P = 0.002) and time 
(F(4.55, 892.35) = 14.80; P < 0.001). No other effects were significant  
(all P values > 0.06). Thus, as illustrated in Fig. 1f, both the AI’s input and 
its label contributed to enhanced bias in humans over time.

Finally, we assessed the rate of decision changes among partici-
pants. Participants were more likely to change their classification when 
their associate disagreed with them. In human–AI-perceived-as-human 
interactions, decision changes occurred at a rate of 16.84% (±1.2% s.e.) 
when there was a disagreement, compared with a mere 0.2% 
(±0.05% s.e.) when agreeing (permutation test comparing the two: 
P < 0.001; d = 1.22; 95% CI = 0.13 to 0.20). Similarly, for the human–
human-perceived-as-AI condition, decision changes were observed 
in 31.84% (±2.5% s.e.) when disagreement existed, compared with 0.4% 
(±0.1% s.e.) in cases of agreement (permutation test comparing the two: 
P < 0.001; d = 1.7; 95% CI = 0.26 to 0.36).

To quantify the effects of input and label on decision changes in 
cases of disagreement, we submitted the percentage of decision change 
into a 2 (input: AI versus human) × 2 (label: AI versus human) ANOVA with 
time (blocks 1–6) as a covariate. The results revealed that both the AI’s 
input (F(1, 196) = 7.05; P = 0.009) and its label (F(1, 196) = 76.30; P < 0.001) 
increased the likelihood of a decision change. These results remained 
consistent after applying Welch’s correction to address violations of 
the homogeneity of variance assumption: for AI’s input F(1, 197.92) = 5.11 
and P = 0.02 and for AI’s label F(1, 175.57) = 74.21 and P < 0.001. All other 
main effects and interactions were not significant (all P values > 0.13).

Biased algorithms bias decisions, whereas accurate ones 
improve them
Next, we sought to generalize the above results to different types of 
algorithm and domain. In particular, we aimed to mimic a situation 
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in which humans are not a priori biased, but rather AI bias emerges 
for other reasons (for example, if it was trained on unbalanced data). 
To this end, we employed a variant of the random dot kinematogram 
(RDK) task48–51, in which participants were presented with an array of 
moving dots and asked to estimate the percentage of dots that moved 
from left to right on a scale ranging from 0% (no dots moved from left to 
right) to 100% (all dots moved from left to right). To estimate baseline 
performance, participants first performed the RDK task on their own 
for 30 trials and reported their confidence on a scale ranging from 
not confident at all to very confident (Fig. 2a). Across trials, the actual 
average percentage of dots that moved rightward was 50.13 ± 20.18% 
(s.d.), which was not significantly different from 50% (permutation 
test against 50%: P = 0.98; d = 0.01; 95% CI = 42.93 to 57.33%), and the 
average confidence was 0.56 ± 0.17 (s.d.).

To examine whether and how different algorithmic response 
patterns affect human decision-making, we used three simple algo-
rithms: accurate, biased and noisy. The accurate algorithm always 
indicated the correct percentage of dots that moved from left to 
right (Fig. 2b; blue distribution). The biased algorithm provided sys-
tematically upward biased estimates of dots that moved to the right 
(Fig. 2b; orange distribution; Mbias = 24.96). The noisy algorithm pro-
vided responses that were equal to those of the accurate algorithm  
plus Gaussian noise (s.d. = 30; Fig. 2b; red distribution). The biased 
and noisy algorithms had the same absolute error (Methods). The 
algorithms used here were hard coded to allow full control over 
their responses.

On each trial, participants first provided their judgement and 
confidence and then observed their own response and a question mark 
where the algorithm response would later appear (Fig. 2c). They were 
asked to assign weight to their own response and to that of the algo-
rithm on a scale ranging from 100% you to 100% AI (Methods). Thus, 
if a participant assigned a weight of w to their own response, the final 
joint decision would be:

Final joint decision

= w × (participant’s response) + (1 −w) × (AI’s response)

This weighting task is analogous to the change decision task in 
experiment 1; however, here we used a continuous scale instead of a 
binary choice, allowing us to obtain a finer assessment of participants’ 
judgements.

After participants provided their response, the response of the AI 
algorithm was revealed (Fig. 2c). Note that the AI algorithm response 
was exposed only after the participants indicated their weighting. This 
was done to prevent participants from relying on the concrete response 
of the algorithm on a specific trial, instead making them rely on their 
global evaluation of the algorithm. The participants interacted with 
each algorithm for 30 trials. The order of the algorithms (bias, noisy 
or accurate) was counterbalanced.

Bias in the RDK task was defined as follows:

Bias =
∑n

i=1(Participant’s responsei − Evidencei)
n

where i and n correspond to the index of the present trial and the total 
number of trials, respectively. Evidence corresponds to the percentage 
of dots that moved rightward in the i-th trial. To compute AI-induced 
bias in participants, we subtracted the participant’s bias in the baseline 
block from the bias in the interaction blocks.

AI-induced bias = BiasAI interaction blocks − Biasbaseline

At the group level, no systematic bias in baseline responses was 
detected (mean response at baseline = 0.62; permutation test against 
0: P = 0.28; d = 0.1; 95% CI = −0.48 to 1.76).

To define accuracy, we first computed an error score for each 
participant:

Error =
∑n

i=1|Participant’s responsei − Evidencei|
n

Then, this quantity was subtracted from the error score in the 
baseline block, indicating changes in accuracy.

AI-induced accuracy change = Errorbaseline − ErrorAI interaction blocks

That is, if errors when interacting with the AI (second quantity) 
were smaller than baseline errors (first quantity), the change would be 
positive, indicating that participants became more accurate. However, 
if errors when interacting with the AI (second quantity) were larger than 
during baseline (first quantity), the change would be negative, indicat-
ing that participants became less accurate when interacting with the AI.

The results revealed that participants became more biased 
(towards the right) when interacting with the biased algorithm relative to 
baseline performance (Mbias (biased AI) = 2.66 and Mbias (baseline) = 0.62; permu-
tation test: P = 0.002; d = 0.28; 95% CI = 0.76 to 3.35; Fig. 2d) and relative  
to when interacting with the accurate algorithm (Mbias (accurate AI) = 1.26;  
permutation test: P = 0.006; d = 0.25; 95% CI = 0.42 to 2.37; Fig. 2d) and 
the noisy algorithm (Mbias (noisy AI) = 1.15; permutation test: P = 0.006; 
d = 0.25; 95% CI = 0.44 to 2.56; Fig. 2d). No differences in bias were found 
between the accurate and noisy algorithms, nor when interacting with 
these algorithms relative to baseline performance (all P values > 0.28). 
See also Supplementary Results for analysis of the AI-induced bias on 
a trial-by-trial basis.

The AI-induced bias was replicated in a follow-up study (n = 50; 
Methods) in which participants interacted exclusively with a biased 
algorithm across five blocks (Mbias = 5.03; permutation test: P < 0.001; 
d = 0.72; 95% CI = 3.14 to 6.98; Fig. 2e). Critically, we found a significant 

Fig. 2 | A biased algorithm produces human bias, whereas an accurate 
algorithm improves human judgement. a, Baseline block. Participants 
performed the RDK task, in which an array of moving dots was presented for 
1 s. They estimated the percentage of dots that moved from left to right and 
reported their confidence. b, Algorithms. Participants interacted with three 
algorithms: accurate (blue distribution), biased (orange distribution) and noisy 
(red distribution). c, Interaction blocks. Participants provided their independent 
judgement and confidence (self-paced) and then observed their own response 
and a question mark where the AI algorithm response would later appear. 
Participants were asked to assign weights to their response and the response 
of the algorithm (self-paced). Thereafter, the response of the algorithm was 
revealed (2 s). Note that the AI algorithm’s response was revealed only after the 
participants indicated their weighting. As a result, they had to rely on their global 
evaluation of the AI based on previous trials. d, AI-induced bias. Interacting with 
a biased AI resulted in significant human bias relative to baseline (P values shown 
in red) and relative to interactions with the other algorithms (P values shown 

in black; n = 120). e, When interacting with a biased algorithm, AI-induced bias 
increases over time (n = 50). f, AI-induced accuracy change. Interacting with an 
accurate AI resulted in a significant increase in human accuracy (that is, reduced 
error) relative to baseline (P values shown in red) and relative to interactions 
with the other algorithms (P values shown in black; n = 120). g, When interacting 
with an accurate algorithm, AI-induced accuracy increases over time (n = 50). 
h,i, Participants perceived the influence of the accurate algorithm on their 
judgements to be greatest (h; n = 120), even though the actual influence of the 
accurate and biased algorithms was the same (i; n = 120). The thin grey lines and 
circles correspond to individual participants. In d and f, the circles correspond 
to group means, the central lines represent median values and the bottom and 
top edges are the 25th and 75th percentiles, respectively. In e and g, the error 
bars represent s.e.m. The P values were derived using permutation tests. All 
significant P values remained significant after applying Benjamini–Hochberg 
false discovery rate correction at α = 0.05.
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linear relationship over time (b = 1.0; t(50) = 2.99; P = 0.004; Fig. 2e), 
indicating that the more participants interacted with the biased  
algorithm, the more biased their judgements became. The learning of 
bias induced by the AI was also supported by a computational learning 
model (Supplementary Models).

Interaction with the accurate algorithm increased the accuracy  
of participants’ independent judgements compared with base-
line performance (Merrors (accurate AI) = 13.48, Merrors (baseline) = 15.03 and 
 Maccuracy change (accurate AI) = 1.55; permutation test: P < 0.001; d = 0.32; 95% 
CI = 0.69 to 2.42; Fig. 2f) and compared with when interacting with the 
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biased algorithm (Merrors (biased AI) = 14.73 and Maccuracy change (biased AI) = 0.03; 
permutation test: P < 0.001; d = 0.33; 95% CI = 0.58 to 1.94; Fig. 2f) and 
the noisy algorithm (Merrors (noisy AI) = 14.36 and Maccuracy change (noisy AI) = 0.67; 
permutation test: P = 0.01; d = 0.22; 95% CI = 0.22 to 1.53; Fig. 2f). No 
differences in induced accuracy change were found between the 
biased and noisy algorithms, nor were there differences in errors when  
interacting with these algorithms relative to baseline performance  
(all P values > 0.14; Fig. 2f).

The AI-induced accuracy change was replicated in a follow-up 
study (n = 50; Methods) in which participants interacted exclusively 
with an accurate algorithm across five blocks (Maccuracy change = 3.55; 
permutation test: P < 0.001; d = 0.64; 95% CI = 2.14 to 5.16; Fig. 2g). 
Critically, we found a significant linear relationship for the AI-induced 
accuracy change over time (b = 0.84; t(50) = 5.65; P < 0.001; Fig. 2g), 
indicating that the more participants interacted with the accurate algo-
rithm, the more accurate their judgements became. For participants’  
confidence rating and weight assignment decisions, see Supplementary  
Results.

Importantly, the increase in accuracy when interacting with the 
accurate AI could not be attributed to participants copying the algo-
rithm’s accurate response, not could the increased bias when interact-
ing with the biased algorithm be attributed to participants copying the 
algorithm’s biased responses. This is because we purposefully designed 
the task such that participants would indicate their judgements on each 
trial before they observed the algorithm’s response. Instead, the par-
ticipants learned to provide more accurate judgements in the former 
case and learned to provide more biased judgements in the latter case.

Participants underestimate the biased algorithm’s impact. We 
sought to explore whether participants were aware of the substantial 
influence the algorithms had on them. To test this, participants were 
asked to evaluate to what extent they believed their responses were 
influenced by the different algorithms they interacted with (Methods). 
As shown in Fig. 2h, participants reported being more influenced by the 
accurate algorithm compared with the biased one (permutation test: 
P < 0.001; d = 0.57; 95% CI = 0.76 to 1.44) and the noisy one (permutation 
test: P < 0.001; d = 0.58; 95% CI = 0.98 to 1.67). No significant difference 
was found between how participants perceived the influence of the 
biased and noisy algorithms (permutation test: P = 0.11; d = 0.15; 95% 
CI = −0.05 to 0.52).

In reality, however, the magnitude by which they became more 
biased when interacting with a biased algorithm was equal to the mag-
nitude by which they became more accurate when interacting with 
an accurate algorithm. We quantified influence using two different 
methods (Methods) and both revealed the same result (Fig. 2i; z-scoring 
across algorithms: permutation test: P = 0.90; d = −0.01; 95% CI = −0.19 
to 0.17; as a percentage difference relative to baseline: permutation 
test: P = 0.89; d = −0.02; 95% CI = −1.44 to 1.90).

These results show that in different paradigms, and under different 
response protocols, interacting with a biased algorithm biases partici-
pants’ independent judgements. Moreover, interacting with an accu-
rate algorithm increased the accuracy of participants’ independent 
 judgements. Strikingly, the participants were unaware of the strong 
effect that the biased algorithm had on them.

Real-world generative AI-induced bias in social judgements
Thus far, we have demonstrated that interacting with biased algo-
rithms leads to more biased human judgements in perceptual and 
emotion-based tasks. These tasks allowed for precise measurements 
and facilitated our ability to dissociate effects. Next, we aimed to gener-
alize these findings to social judgements by using AI systems commonly 
employed in real-world settings, thereby increasing the ecological 
validity of our results52–54 (see also Supplementary Experiment 5 for a 
controlled experiment examining a social judgement task). To this end, 
we examined changes to human judgements following interactions 

with Stable Diffusion—a widely used generative AI system designed 
to create images based on textual prompts55.

Recent studies have reported that Stable Diffusion amplifies existing  
social imbalances. For example, it over-represents White men in 
high-power and high-income professions compared with other 
demographic groups30,56. Such biases can stem from different sources, 
including problematic training data and/or flawed content moderation 
techniques30. Stable Diffusion outputs are used in diverse applications,  
such as videos, advertisements and business presentations. Conse-
quently, these outputs have the potential to impact humans’ belief 
systems, even when an individual does not directly interact with the AI 
system but merely observes its output (for example, on social media, 
in advertisements or during a colleague’s presentation). Here, we test 
whether interacting with Stable Diffusion’s outputs increases bias in 
human judgement.

To test this, we first prompted Stable Diffusion to create: “A color 
photo of a financial manager, headshot, high-quality” (Methods). As 
expected, the images produced by Stable Diffusion over-represented 
White men (85% of images) relative to their representation in the 
population. For example, in the United States only 44.3% of financial 
managers are men57, of whom a fraction are White, and in the United 
Kingdom only about half are men58, of whom a fraction are White. In 
other Western countries the percentage of financial managers who are 
White men is also less than 85% and in many non-Western countries the 
numbers are probably even lower.

Next, we conducted an experiment (n = 100) to examine how par-
ticipants’ judgements about who is most likely to be a financial manager 
would alter after interactions with Stable Diffusion. To this end, before 
and after interacting with Stable Diffusion, participants completed 100 
trials. On each trial, they were presented with images of six individuals 
from different race and gender groups: (1) White men; (2) White women; 
(3) Asian men; (4) Asian women; (5) Black men; and (6) Black women 
(see Fig. 3a; stage 1; baseline). The images were taken from the Chicago 
Face Database59 and were balanced in terms of age, attractiveness 
and racial prototypicality (Methods). On each trial, participants were 
asked: “which person is most likely to be a financial manager?”. They 
responded by clicking on one of the images. Before this, participants 
were provided with a definition of financial manager (Methods). We 
were interested in whether participants’ responses would gravitate 
towards White men after interacting with Stable Diffusion outputs.

Before interacting with Stable Diffusion, participants selected 
White men, White women, Asian men, Asian women, Black men and 
Black women 32.36, 14.94, 14.40, 20.24, 6.64 and 11.12% of the time, 
respectively. Although there is no definitive ground truth here, based 
on demographic data, White men is estimated not to be a normative 
response (for details, see Supplementary Results). Next, participants 
were exposed to the outputs of Stable Diffusion (see Fig. 3a; stage 
2; exposure). Specifically, participants were told that they would be 
shown three images of financial managers generated by AI (Stable 
Diffusion) and received a brief explanation about Stable Diffusion 
(Methods). Then, on each trial, participants viewed three images of 
financial managers that were randomly chosen from those generated 
by Stable Diffusion for 1.5 s. This brief exposure time mimics common 
real-world interaction with AI-generated content on platforms such as 
social media, news websites and advertisements. Such encounters are 
often brief, with users rapidly scrolling through content. For example, 
the average viewing time for images on mobile devices is 1.7 s (ref. 60).

In stage 3 (Fig. 3a; stage 3; post-exposure), participants repeated 
the task from stage 1. The primary measure of interest was the change 
in participants’ judgements. The data were analysed using a mixed 
model multinomial logistic regression with exposure (before versus 
after exposure to AI images) as a fixed factor, with random intercepts 
and slopes at the participant level. This model was chosen because the 
dependent variable involved a choice from six distinct and unordered 
categories (see Supplementary Results for an alternative analysis).
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The findings revealed a significant effect for exposure (F(5, 62) = 5.89;  
P < 0.001; Fig. 3b), indicating that exposure to the AI images altered 
human judgements. In particular, exposure increased the likelihood 
of choosing White men as financial managers (Mbefore exposure = 32.36%;  
Mafter exposure = 38.20%) compared with White women (Mbefore exposure =  
14.94%; Mafter exposure = 14.40%; b = 0.26; t = 2.08; P = 0.04; 95% CI = 0.01 to 
0.50), Asian women (Mbefore exposure = 20.24%; Mafter exposure = 17.14%; b = 0.47; 
t = 3.79; P < 0.001; 95% CI = 0.22 to 0.72), Black men (Mbefore exposure =  
6.64%; Mafter exposure = 5.62%; b = 0.65; t = 3.04; P = 0.004; 95% CI = 0.22 
to 1.08) and Black women (Mbefore exposure = 11.12%; Mafter exposure = 10.08%; 
b = 0.47; t = 2.46; P = 0.02; 95% CI = 0.09 to 0.87). No significant dif-
ference was found between White men and Asian men (Mbefore exposure =  
14.70%; Mafter exposure = 14.56%; b = 0.28; t = 2.01; P = 0.051; 95% CI = −0.001 
to 0.57).

We also ran this experiment with another group of participants to 
control for order effects. The controls were never exposed to the Stable 
Diffusion images of financial managers; instead, they were exposed 
to neutral images of fractals (see Fig. 3a; stage 2; exposure). The same 
analysis was performed for the control condition as for the treatment 
condition. As expected, no significant effect of exposure to neutral frac-
tals was found for the control condition (F(5, 67) = 1.69; P = 0.15; Fig. 3b). 
Additionally, no significant differences were observed when comparing 
White men (Mbefore exposure = 28.42%; Mafter exposure = 27.28%) with each of the 
demographic groups (all P values > 0.06): White women (Mbefore exposure =  
15.64%; Mafter exposure = 15.36%), Asian men (Mbefore exposure = 12.00%;  
Mafter exposure = 11.18%), Asian women (Mbefore exposure = 20.52%; Mafter exposure =  
19.74%), Black men (Mbefore exposure = 8.78%; Mafter exposure = 9.30%) and Black 
women (Mbefore exposure = 14.64%; Mafter exposure = 17.14%). Comparison of 

the treatment and control groups indicated that the former showed 
a greater increase than the latter in selecting White men after expo-
sure to the images relative to before (permutation test comparing the 
change in selecting White men across groups: P = 0.02; d = 0.46; 95% 
CI = 0.01 to 0.13).

These results suggest that interactions with a commonly used AI 
system that amplifies imbalances in real-world representation induce 
bias in humans. Crucially, the AI system in this experiment is firmly 
rooted in the real world. Stable Diffusion has an estimated 10 mil-
lion users generating millions of images daily61, underscoring the 
importance of this phenomenon. These findings were replicated in a 
follow-up experiment with slight changes to the task (see Supplemen-
tary Experiment 6).

Discussion
Our findings reveal that human–AI interactions create a feedback loop 
where even small biases emerging from either side increase subsequent 
human error. First, AI algorithms amplify minute biases embedded in 
the human data they were trained on. Then, interactions with these 
biased algorithms increase initial human biases. A similar effect was not 
observed for human–human interactions. Unlike the AI, humans did 
not amplify the initial small bias present in the data, possibly because 
humans are less sensitive to minor biases in the data, whereas the AI 
exploits them to improve its prediction accuracy (see Table 1).

The effect of AI-induced bias was generalized across a range of 
algorithms (such as CNN and text-to-image generative AI), tasks and 
response protocols, including motion discrimination, emotion aggre-
gation and social-based biases. Over time, as participants interacted 
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Fig. 3 | Interaction with a real-world AI system amplifies human bias (n = 100). 
a, Experimental design. The experiment consisted of three stages. In stage 1, 
participants were presented with images featuring six individuals from different 
race and gender groups: a White man, a White woman, an Asian man, an Asian 
woman, a Black man and a Black woman. On each trial, participants selected the 
person who they thought was most likely to be a financial manager. In stage 2, for 
each trial, three images of financial managers generated by Stable Diffusion were 
randomly chosen and presented to the participants. In the control condition, 

participants were presented with three images of fractals instead. In stage 
3, participants repeated the task from stage 1, allowing measurement of the 
change in participants’ choices before versus after exposure to the AI-generated 
images. b, The results revealed a significant increase in participants’ inclination 
to choose White men as financial managers after being exposed to AI-generated 
images, but not after being exposed to fractal neutral images (control). The error 
bars represent s.e.m. Face stimuli in a reproduced from ref. 59 under a Creative 
Commons licence CC BY 4.0.
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with the biased AI system repeatedly, their judgements became more 
biased, suggesting that they learned to adopt the AI system’s bias. 
Using computational modelling (Supplementary Models), we show 
that humans learn from interactions with an AI algorithm to become 
biased, rather than just adopting the AI’s judgement per se. Inter-
estingly, participants underestimated the substantial impact of the 
biased algorithm on their judgement, which could leave them more 
susceptible to its influence.

We further demonstrated a bias feedback loop in experiments uti-
lizing a popular real-world AI system—Stable Diffusion. Stable Diffusion 
tends to over-represent White men when prompted to generate images 
of high-power and high-income professionals30. Here, we show that expo-
sure to such Stable Diffusion images biases human judgement. This prob-
ably happens in real-world scenarios when individuals interact with Stable 
Diffusion directly and/or encounter images created by Stable Diffusion 
on various digital platforms, such as social media and news websites.

Together, the present series of experiments demonstrates a 
human–AI feedback loop that leaves humans more biased than they 
initially were, both due to the AI’s signal and to the human percep-
tion of AI62. These findings go beyond previous research on AI bias 
amplification18–20,63–66, revealing a problem potentially relevant to 
various AI systems and decision-making contexts, such as hiring or 
medical diagnosis.

The current results uncover a fundamental mechanism of bias 
amplification in human–AI interactions. As such, they underscore the 
heightened responsibility that algorithm developers must confront 
in designing and deploying AI systems. Not only may AI algorithms 
exhibit bias themselves, but they also have the potential to amplify the 
biases of humans interacting with them, creating a profound feedback 
loop. The implications can be widespread due to the vast scale and 
rapidly growing prevalence of AI systems. Of particular concern is the 
potential effect of biased AIs on children67, who have more flexible and 
malleable knowledge representations and thus may adopt AI systems’ 
biases more readily.

It is important to clarify that our findings do not suggest that all 
AI systems are biased, nor that all AI–human interactions will create a 
bias. To the contrary, we demonstrate that when humans interact with 
an accurate AI, their judgements become more accurate (consistent  
with studies showing that human–AI interaction can improve per-
formance outcomes68). Rather, the results suggest that when a bias 
exists in the system it has the potential to amplify via a feedback loop. 
Because biases exist in both humans and AI systems, this is a problem 
that should be taken seriously.

Our results indicate that participants learned the AI system’s bias 
readily, primarily due to the characteristics of the AI’s judgements, but 
also because of participants’ perception of the AI (see Fig. 1f; for extensive 
discussion, see ref. 62). Specifically, we observed that when participants 
were told they were interacting with a human when in fact they were inter-
acting with an AI, they learned the AI’s bias to a lesser extent than when 
they believed they were interacting with an AI (although they did still 
significantly learn the bias). This may be because participants perceived 
the AI systems as superior to humans on the task6,38. Thus, participants 
became more biased, even though they were updating their beliefs in a 
fashion that may be viewed as perfectly rational.

An intriguing question raised by the current findings is whether the 
observed amplification of bias endures over time. Further research is 
required to assess the longevity of this effect. Several factors are likely 
to influence the persistence of bias, including the duration of exposure 
to the biased AI, the salience of the bias and individual differences in 
the perception of AI systems69. Nonetheless, even temporary effects 
could carry substantial consequences, particularly considering the 
scale at which human–AI interactions occur.

In conclusion, AI systems are increasingly integrated into numer-
ous domains, making it crucial to understand how to effectively use 
them while mitigating their associated risks. The current study reveals 

that biased algorithms not only produce biased evaluations, but sub-
stantially amplify such biases in human judgements, creating a feed-
back loop. This underscores the pressing need to increase awareness 
among researchers, policymakers and the public of how AI systems 
can influence human judgements. It is possible that strategies aimed 
at increasing awareness of potential biases induced by AI systems may 
mitigate their impact—an option that should be tested. Importantly, 
our results also suggest that interacting with an accurate AI algorithm 
increases accuracy. Thus, reducing algorithmic bias may hold the 
potential to reduce biases in humans, increasing the quality of human 
judgement in domains ranging from health to law.

Methods
Ethical statement
This study was conducted in compliance with all of the relevant ethical 
regulations and received approval from the ethics committee of Univer-
sity College London (3990/003 and EP_2023_013). All of the participants 
provided informed consent before their involvement in the study.

Participants
A total of 1,401 individuals participated in this study. For experiment 1 
(level 1), n = 50 (32 women and 18 men; Mage = 38.74 ± 11.17 years (s.d.)). 
For experiment 1 (human–human; level 2), n = 50 (23 women, 25 men 
and two not reported; Mage = 34.58 ± 11.87 years (s.d.)). For experiment 
1 (human–AI; level 3), n = 50 (24 women, 24 men and two not reported; 
Mage = 39.85 ± 14.29 years (s.d.)). For experiment 1 (human–human; 
level 3), n = 50 (20 women and 30 men; Mage = 40.16 ± 13.45 years 
(s.d.)). For experiment 1 (human–AI perceived as human; level 3), 
n = 50 (15 women, 30 men, four not reported and one non-binary; 
Mage = 40.16 ± 13.45 years (s.d.)). For experiment 1 (human–human 
perceived as AI; level 3), n = 50 (18 women, 30 men, one not reported 
and one non-binary; Mage = 34.79 ± 10.80 years (s.d.)). For experiment 2,  
n = 120 (57 women, 60 men, one other and two not reported; 
Mage = 38.67 ± 13.19 years (s.d.)). For experiment 2 (accurate algorithm), 
n = 50 (23 women and 27 men; Mage = 36.74 ± 13.45 years (s.d.)). For 
experiment 2 (biased algorithm), n = 50 (26 women, 23 men and one 
not reported; Mage = 34.91 ± 8.87 years (s.d.)). For experiment 3, n = 100 
(40 women, 56 men and four not reported; Mage = 30.71 ± 12.07 years 
(s.d.)). For Supplementary Experiment 1, n = 50 (26 women, 17 men 
and seven not reported; Mage = 39.18 ± 14.01 years (s.d.)). For Supple-
mentary Experiment 2, n = 50 (24 women, 23 men, one other and two 
not reported; Mage = 36.45 ± 12.97 years (s.d.)). For Supplementary  
Experiment 3, n = 50 (20 women, 29 men and one not reported; 
Mage = 32.05 ± 10.08 years (s.d.)). For Supplementary Experiment 
4, n = 386 (241 women, 122 men, seven other and 16 not reported; 
Mage = 28.07 ± 4.65 years (s.d.)). For Supplementary Experiment 5,  
n = 45 (19 women, 23 men, one other and two not reported; 
Mage = 39.50 ± 14.55 years (s.d.)). For Supplementary Experiment 6,  
n = 200 (85 women, 98 men, five other and 12 not reported; 
Mage = 30.87 ± 10.26 years (s.d.)).

Sample sizes were determined based on pilot studies to achieve 
a power of 0.8 (α = 0.05) using G*Power70. In each experiment, the 
largest n required to detect a key effect was used and rounded up. 
Participants were recruited via Prolific (https://prolific.com/) and 
received, in exchange for participation, a payment of £7.50 per hour 
until April 2022, after which the rate was increased to £9.00 per hour. 
Additionally, participants in experiments 1 and 2 received a bonus fee 
ranging from £0.50 to £2,00, which was determined based on perfor-
mance. All participants had normal or corrected-to-normal vision. The 
experiments were designed in PsychoPy3 (2022.2.5) and hosted on the 
Pavlovia platform (https://pavlovia.org/).

Tasks and analyses
Emotional aggregation task. AI–human interaction. For level 1,  
participants performed 100 trials of the emotion aggregation task.  

http://www.nature.com/nathumbehav
https://prolific.com/
https://pavlovia.org/


Nature Human Behaviour | Volume 9 | February 2025 | 345–359 355

Article https://doi.org/10.1038/s41562-024-02077-2

On each trial, an array of 12 emotional faces, ranging from sad to happy, 
was presented for 500 ms (Fig. 1a). The participants indicated whether, 
on average, the faces were more happy or more sad. Each participant 
was presented with 100 unique arrays of faces, which were generated 
as described below.

To generate the individual faces used in this task, a total of 50 mor-
phed greyscale faces were adopted from ref. 41. The faces were created by 
matching multiple facial features (for example, the corners of the mouth 
and centres of the eyes) between extreme sad and happy expressions 
of the same person (taken from the Ekman gallery71) and then linearly 
interpolating between them. The morphed faces ranged from 1 (100% 
sad face) to 50 (100% happy face), based on the morphing ratio. These 
objective ranking scores of each face correlated well with participants’ 
subjective perception of the emotion expressed by the face. This was 
determined by showing participants the faces one by one before per-
forming the emotion aggregation task and asking them to rate the faces 
on a scale from very sad to very happy (self-paced). A linear regression 
between the objective rankings of the faces and subjective evaluations 
of the participants indicated that the participants were highly sensitive 
to the emotional expressions (b = 0.8; t(50) = 26.25; P < 0.001; R2 = 0.84).

The 100 arrays of 12 emotional faces were generated as follows. For 
50 of the arrays, the 12 faces were randomly sampled (with repetition) 
from a uniform distribution in the interval [1,50] with a mean of 25.5. Then, 
for each of these arrays, a mirror array was created in which the ranking 
score of each face was equal to 51 minus the ranking scores of the face in 
the original trial. For example, if the ranking scores of faces in an original 
array were 21, 44, …, 25, the ranking scores of the faces in the mirror array 
were 51 − 21 = 30, 51 − 44 = 7, …, 51 − 25 = 26. This method ensured that for 
half of the trials the objective mean ranking of the array was higher than 
the mean of the uniform distribution (mean > 25.5; more happy faces) and 
in the other half it was lower (mean < 25.5; more sad faces). If the objec-
tive mean ranking of an array was exactly 25.5, the faces were resampled.

Bias in the emotion aggregation task was defined as a percentage 
of more sad responses beyond 50%. As described in the Results, at the 
group level the participants showed a tendency to classify the arrays of 
faces as more sad (permutation test against 50%: P = 0.017; d = 0.34; 95% 
CImore sad = 0.51 to 0.56). Similar results were observed when the bias was 
quantified using a psychometric function analysis (see Supplementary 
Results for more details).

For level 2, the choices of the participants in level 1 (5,000 choices) 
were fed into a CNN consisting of five convolutional layers (with filter 
sizes of 32, 64, 128, 256, 512 and rectified linear unit (ReLU) activation 
functions) and three fully connected dense layers (Fig. 1a). A 0.5 drop-
out rate was used. The predictions of the CNN were calculated on a test 
set consisting of 300 new arrays of faces (that is, arrays that were not 
included in the training or validation sets). Half of the arrays in the test 
set had an objective mean ranking score higher than 25.5 (that is, the 
more happy classification) and the other half had a score lower than 
25.5 (that is, the more sad classification).

For level 3, participants first performed the same procedure described 
in level 1, except they performed 150 trials instead of 100. These trials  
were used to measure the baseline performance of participants in the emo-
tion aggregation task. Then, participants performed the emotion aggre-
gation task as in the previous experiment. However, on each trial, after 
indicating their choice, they were also presented with the response of an 
AI algorithm for 2 s (Fig. 1a). The participants were then asked whether they 
would like to change their decision (that is, from more sad to more happy and  
vice versa) by clicking on the yes or no buttons (Fig. 1a). Before interact-
ing with the AI, participants were told that they “will be presented with  
the response of an AI algorithm that was trained to perform the task”. 
Overall, participants performed 300 trials divided into six blocks.

Human–human interaction. For level 1, the responses in the first level of 
the human–human interaction were the same as those in the human–AI 
interaction.

For level 2, participants first performed the same procedure as 
in level 1. Next, they were presented with 100 arrays of 12 faces for 
500 ms, followed by the response of another participant from level 1 
to the same array, which was presented for 2 s (Fig. 1b). On each trial, 
the total numbers of more sad and more happy classifications of the 
other participants (up until that trial) were presented at the bottom 
of the screen. Two trials were pseudo-randomly sampled from each of 
the 50 participants in level 1. The first trial was sampled randomly and 
the second was its matched mirror trial. The responses were sampled 
such that they preserved the bias and accuracy of the full set (with dif-
ferences in bias and accuracy not exceeding 1%).

To verify that the participants attended to the task, they were 
asked to report the response of the other player on 20% of the trials, 
which were randomly selected (that is, they were asked “What was the 
response of the other player?” and had to choose between more sad 
and more happy). The data from participants whose accuracy scores 
were lower than 90% were excluded from further analysis (n = 14 par-
ticipants) for lack of engagement with the task.

After completing this part of the experiment, participants per-
formed the emotion aggregation task again on their own for another 
ten trials.

For level 3, participants performed the same procedure as 
described for human–AI interaction (level 3), except that here they 
interacted with a human associate instead of an AI associate. The 
responses of the human associate were pseudo-randomly sampled 
from the human–human network (level 2), such that six responses were 
pseudo-randomly sampled from each participant (a total of 300 trials). 
Before interacting with the human associate, participants were told 
that they “will be presented with the responses of another participant 
who already performed the task”.

Human–AI-perceived-as-human interaction. For level 1, the responses 
in the first level were the same as those for the human–AI and human–
human interactions.

Level 2 was the same as that in the human–AI interaction.
For level 3, participants performed the exact same procedure as 

in the human–human interaction. The only difference was that, while 
they were led to believe that they “will be presented with the responses 
of another participant who already performed the task”, they were in 
fact interacting with the AI system trained in level 2.

Human–human-perceived-as-AI interaction. The responses in the first 
level were the same as those for the human–AI and human–human 
interactions.

The second level was the same as that in the human–human 
interaction.

For level 3, participants performed the exact same procedure as 
in the human–AI interaction. The only difference was that, while they 
were led to believe that they “will be presented with the response of 
an AI algorithm that was trained to perform the task”, they were in fact 
interacting with the human participants from level 2.

RDK task. Main experiment. For the baseline part of this experiment, 
participants performed a version of the RDK task48–51 across 30 trials. On 
each trial, participants were presented with an array of 100 white dots 
moving against a grey background. On each trial, the percentage of dots 
moving from left to right was one of the following: 6, 16, 22, 28, 30, 32, 
34, 36, 38, 40, 42, 44, 46, 48, 50 (presented twice), 52, 54, 56, 58, 60, 62, 
64, 66, 68, 70, 72, 78, 86 or 96%. The display was presented for 1 s and 
then disappeared. Participants were asked to estimate the percentage of 
dots that moved from left to right on a scale ranging from 0% left to right 
to 100% left to right, as well as to indicate their confidence on a scale 
ranging from not confident at all to very confident (Fig. 2a, top panel).

Interaction blocks were then introduced. On each trial, partici-
pants first performed the RDK task exactly as described above. Then, 
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they were presented with their response (Fig. 2c) and a question mark 
where the AI algorithm response would later appear. They were asked 
to assign a weight to each response on a scale ranging between 100% 
you to 100% AI (self-paced). The final joint response was calculated 
according to the following formula:

Final joint response

= w × (participant’s response) + (1 −w) × (AI’s response)

Where w is the weight the participants assigned to their own 
response. For example, if the response of the participant was 53% of 
the dots moved rightward and the response of the AI was 73% of the dots 
moved rightward and the participants assigned a weight of 40% to their 
response, the final joint response was 0.4 × (53%) + 0.6 × (73%) = 65% 
of the dots moved rightward. Note that because the AI response was 
not revealed until the participants indicated their weighting, partici-
pants had to rely on their evaluation of the AI based on past trials and 
could not rely on the response of the AI on that trial. Thereafter, the 
AI response was revealed and remained on screen for 2 s. Participants 
completed three blocks each consisting of 30 trials.

The participants interacted with three different algorithms: an accu-
rate algorithm, a biased algorithm and a noisy algorithm (Fig. 2b). The 
accurate algorithm provided the correct response on all trials. The biased 
algorithm provided a response that was higher than the correct response 
by 0–49% (mean bias = 24.96%). The noisy algorithm provided responses 
similar to those of the accurate algorithm, but with the addition of a con-
siderable amount of Gaussian noise (s.d. = 28.46). The error (that is, the 
mean absolute difference from the correct response) of the biased and 
noisy algorithms was virtually the same (24.96 and 25.33, respectively).

The order of the algorithms was randomized between participants 
using the Latin square method with the following orders: (1) accurate, 
biased, noisy; (2) biased, noisy, accurate; and (3) noisy, accurate, biased. 
Before interacting with the algorithms, participants were told that they 
“will be presented with the response of an AI algorithm that was trained to 
perform the task”. Before starting each block, participants were told that 
they would interact with a new and different algorithm. The algorithms 
were labelled algorithm A, algorithm B and algorithm C. At the end of 
the experiment, the participants were asked the following questions: 
(1) “To what extent were your responses influenced by the responses of 
algorithm A?”; and (2) “How accurate was algorithm A?”. These questions 
were repeated for algorithms B and C. The response to the first question 
was given on a scale ranging from not at all (coded as 1) to very much 
(coded as 7) and the response to the second question was given on a 
scale ranging from not accurate at all (coded as 1) to very accurate (coded 
as 7). To assist participants in distinguishing between the algorithms, 
each algorithm was consistently represented with the same font colour  
(A, green; B, blue; C, purple) throughout the whole experiment.

We used three main dependent measures: bias, accuracy (error) 
and the weight assigned to the AI evaluations. Bias was defined as the 
mean difference between a participant’s responses and the correct 
percentage of dots that moved from left to right. For each participant, 
the bias in the baseline block was subtracted from the bias in the interac-
tion blocks. The resulting difference in bias was compared against zero. 
Positive values indicated that participants reported more rightward 
movement in the interaction blocks than at baseline, whereas negative 
values indicated the opposite. Error was defined as the mean absolute 
difference between a participant’s responses and the correct percent-
age of dots that moved from left to right. In all analyses, for each partici-
pant, the error in the interaction blocks was subtracted from the error 
in the baseline blocks. Thus, positive values of this difference score 
indicated increased accuracy due to interaction with the AI, whereas 
negative values indicated reduced accuracy. The weights assigned 
to the AI evaluations were defined as the average weight participants 
assigned to the AI response on a scale ranging from −1 (weight of 0% to 
the AI response) to 1 (weight of 100% to the AI response).

The influences of the biased and accurate algorithms were quan-
tified using two different methods: relative changes and z-scoring 
across algorithms. The relative change in bias was computed by 
dividing the AI-induced bias by the baseline bias, while the relative 
change in accuracy was computed by dividing the AI-induced accuracy 
change by the baseline error. A comparison of the relative changes 
in bias and accuracy yielded no significant difference (permutation 
test: P = 0.89; d = −0.02; 95% CI = −1.44 to 1.9). The same result was 
obtained for z-scoring across algorithms. In this method, we z-scored 
the AI-induced bias of each participant when interacting with each 
algorithm (that is, for each participant, we z-scored across algorithms 
and not across participants). Therefore, three z-scores were obtained 
for each participant, indicating the relative effect of the biased, accu-
rate and noisy algorithms. The same procedure was repeated for the 
AI-induced accuracy, resulting in three z-scores indicating the relative 
influences of the different algorithms on the accuracy of each partici-
pant. Then, the z-scores of the bias algorithm (for the AI-induced bias) 
and the z-scores of the accurate algorithm (for the AI-induced accuracy 
change) were compared across participants. No significant difference 
was found between them (permutation test: P = 0.90; d = −0.01; 95% 
CI = −0.19 to 0.17).

Effects across time. To examine the AI-induced bias and accuracy effects 
across time, we conducted two additional experiments. In the first one, 
participants performed the RDK task exactly as described above, except 
for one difference. Instead of interacting with accurate, biased and noisy 
algorithms, participants interacted only with a biased algorithm across 
five blocks. The second experiment was similar to the first, except for 
participants interacting with an accurate algorithm across five blocks.

Experiment 3. This experiment aimed to investigate whether exposure 
to images generated by the popular AI system Stable Diffusion55, which 
is known to exemplify social imbalances30, increases judgement bias 
in humans. To assess this, participants completed a judgement task 
before and after viewing Stable Diffusion-generated images. Their 
performance was compared with that of a control group in which 
participants were presented with fractals images.

Procedure. A total of 100 participants were recruited for the experi-
ment. Participants were randomly assigned to either the AI exposure 
group (n = 50) or a control fractal exposure group (n = 50).

The study comprised three stages. In stage 1 (baseline assessment), 
the participants completed 100 trials in which they were shown an 
image featuring six individual headshots and were asked: “Who do you 
think is more likely to be a financial manager?” (see Fig. 3a; stage 1). 
Participants made their selection by clicking on the chosen image using 
their computer mouse. Before this stage, participants were provided 
with a definition of a financial manager (“a person responsible for the 
supervision and handling of the financial affairs of an organization”; 
taken from the Collins Dictionary).

In stage 2 (exposure), participants in the AI condition completed 
100 trials in which they were presented with Stable Diffusion-generated 
images of financial managers (three images per trial). The three images 
were randomly chosen and presented for 1.5 s. Before viewing the 
images, participants were presented with a brief description of Stable 
Diffusion. Participants in the control group were shown fractal images 
instead of financial manager images.

In stage 3 (post-exposure), participants completed 100 trials in 
which the judgement task from stage 1 was repeated.

The order of the trials was randomized for all stages across 
participants.

Stimuli. The stimuli in each trial consisted of images of six individuals 
(a White man, a White woman, an Asian man, an Asian woman, a Black 
man and a Black woman) selected from the Chicago Face Database 
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(see the GitHub repository for the exact images used)59. From each 
demographic category, ten images of individuals aged 30–40 years 
were chosen. The chosen individuals were balanced in age, attractive-
ness and racial prototypicality (all P values > 0.16). Each image was 
presented against a grey background with a circle framing the face  
(see Fig. 3a). The locations of the individuals from each demographic 
group in the image within each trial were randomly determined.

In the AI exposure condition, Stable Diffusion (version 2.1) was 
used to generate 100 images of financial managers, using the prompt: 
“A color photo of a financial manager, headshot, high-quality”. Images 
that contained multiple people, unclear faces or distortions were 
replaced with other images of the same race and gender. The control 
condition featured 100 fractal images of the same size and resolution 
as the images of the financial managers. Thirty naive observers catego-
rized the faces according to race and gender (Cohen’s κ = 0.611). Each 
image was ultimately classified based on the majority categorization 
across the 30 participants. Of the Stable Diffusion-generated images, 
85% were classified as White men, 11% as White women, 3% as non-White 
men and 1% as non-White women.

Statistical analyses
All of the statistical tests were two sided. Mean comparisons utilized 
non-parametric permutation tests, with P values computed using 105 
random shuffles. When parametric tests were employed, normality 
was assumed based on the central limit theorem, as all conditions had 
sufficiently large sample sizes to justify this assumption. In repeated 
measures ANOVAs, the assumption of sphericity was tested using 
Mauchly’s test. In case of violation, Greenhouse–Geisser correction 
was applied. The equality-of-variances assumption was tested using 
Levene’s test. In case of violation, Welch correction was applied.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available at  
https://github.com/affective-brain-lab/BiasedHumanAI.

Code availability
The code related to this study is available at https://github.com/affective- 
brain-lab/BiasedHumanAI.
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