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Artificial intelligence (Al) technologies are rapidly advancing, enhancing
human capabilities across various fields spanning from finance to medicine.
Despite their numerous advantages, Al systems can exhibit biased

judgements in domains ranging from perception to emotion. Here,ina
series of experiments (n=1,401 participants), we reveal a feedback loop
where human-Alinteractions alter processes underlying human perceptual,
emotional and social judgements, subsequently amplifying biases in humans.
This amplification s significantly greater than that observed ininteractions
between humans, due to both the tendency of Al systems to amplify biases
and the way humans perceive Al systems. Participants are often unaware of
the extent of the Al'sinfluence, rendering them more susceptible to it. These
findings uncover amechanism wherein Al systems amplify biases, which

are further internalized by humans, triggering a snowball effect where small
errorsinjudgementescalateinto much larger ones.

Interactions between humans and artificial intelligence (Al) systems
have become prevalent, transforming modern society at an unprece-
dented pace. Avital research challengeis to establish how these interac-
tions alter human beliefs. While decades of research have characterized
how humansinfluence each other', the influence of Alon humans may
be qualitatively and quantitatively different. This is partially because
Aljudgements are distinct from human judgements in several ways
(for example, they tend to be less noisy*) and because humans may
perceive Al judgements differently from those of other humans>®. In
this Article, we show how human-Alinteractions impact human cog-
nition. In particular, we reveal that when humans repeatedly interact
with biased Al systems, they learn to be more biased themselves. We
show thisinarange of domains and algorithms, including awidely used
real-world text-to-image Al system.

Modern Al systems rely on machine learning algorithms, such as
convolutional neural networks’ (CNNs) and transformers®, to iden-
tify complex patterns in vast datasets, without requiring extensive
explicit programming. These systems clearly augment human natural
capabilities in avariety of domains, such as health care’ ", education'?,

marketing® and finance'. However, it is well documented that Al sys-
tems can automate and perpetuate existing human biases in areas
ranging from medical diagnoses to hiring decisions" ", and may even
amplify those biases'®?°. While this problem has been established,
a potentially more profound and complex concern has been largely
overlooked until now. As critical decisions increasingly involve col-
laboration between Al and humans (for example, Al systems assist-
ing physicians in diagnosis and offering humans advice on various
topics?#), these interactions provide amechanism through which not
only biased humans generate biased Al systems, but biased Al systems
can alter human beliefs, leaving them more biased than they initially
were. This possibility, predicted from a synthesis of bias amplification
and human feedback learning, holds substantial implications for our
modern society, but has not yet been empirically tested.

Bias, defined as a systematic error in judgements, can emerge in
Al systems primarily due to inherent human biases embedded in the
datasets the algorithmwas trained on (‘biasin bias out”; see also ref. 24)
and/orwhenthedataaremorerepresentativeofoneclassthantheother 7,
For example, generative Al systems such as text-to-image technologies
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and large language models learn from available data on the Internet,
which being generated by humans contains inaccuracies and biases,
evenincaseswhere the ground truth exists. As aresult, these Al systems
end up reflecting a host of human biases (such as cognitive biases**%, as
well as racial and gender biases®’). When humans subsequently interact
with these systems (for example, by generating images or text), they
may learnfromtheminturn. Interaction with other Altechnologies that
exhibit bias (including social bias), such as CNN-based facial recogni-
tion algorithms®, recommendation systems®, hiring tools® and credit
allocation tools*, may also induce similar circularity. Moreover, human
biases canbe amplified even whenindividualsare notdirectlyinteracting
withan Alsystem, but merely observingits output. Indeed, anestimated
15 billion Al-generated images circulate online®, which users routinely
consume passively on social media, news websites and other digital plat-
forms. As aresult, the impact of Al-generated content on human biases
may extend beyond theimmediate users of these systems.

Here, over aseries of studies, we demonstrate that when humans
and Al interact, even minute perceptual, emotional and social biases
originating either from Al systems or humans leave human beliefs
more biased, potentially forming a feedback loop. The impact of Al
on humans’beliefsis gradually observed over time, as humans slowly
learn from the Al systems. We uncover that the amplification effect is
greaterin human-Alinteractionsthanin human-humaninteractions,
due both to human perception of Al and the unique characteristics
of Al judgements. In particular, Al systems may be more sensitive to
minor biases in the data than humans due to their expansive com-
putational resources® and may therefore be more likely to leverage
them to improve prediction accuracy, especially when the data are
noisy”. Moreover, once trained, Al systems’ judgements tend to be
less noisy than those of humans®. Thus, Al systems provide a higher
signal-to-noise ratio than humans, which enables rapid learning by
humans, even if the signal is biased. In fact, if the Al is perceived as
being superior to humans®*** (but see ref. 40), learning its bias can
be considered perfectly rational. Amplification of bias only occurs
if the bias already exists in the system: when humans interact with an
accurate Al system, their judgements areimproved.

Results

Human-Alfeedback loops can amplify human’s biases

We begin by collecting human data in an emotion aggregation task in
which humanjudgementis slightly biased. We then demonstrate that
training an Al algorithm on this slightly biased dataset results in the
algorithm not only adopting the bias but further amplifying it. Next,
we show thatwhen humans interact with the biased Al, their initial bias
increases (Fig. 1a; human-Alinteraction). This bias amplification does
notoccurinaninteractionincluding only human participants (Fig. 1b;
human-human interaction).

Humans exhibit a small judgement bias. Fifty participants performed
anemotion aggregation task (adapted fromrefs. 41-44). On each of 100
trials, participants were presented briefly (500 ms) withan array of 12
faces and were asked to report whether the mean emotion expressed
by the faces in the array was more sad or more happy (Fig. 1a; level 1).
The faces were sampled froma dataset of 50 morphed faces, created by
linearly interpolating between sad and happy expressions (Methods).
Based on the morphing ratio, each face was ranked from 1 (100% sad
face) to 50 (100% happy face). These rankings were closely associated
with participants’ own rankings of each face when observed one by
one (b=0.8; t(50) =26.25; P< 0.001; see Supplementary Results). We
created 100 unique arrays of 12 faces for each participant. The average
ranking of the 12 faces in half of the arrays was smaller than 25.5 (thus,
the array was more sad) and greater than 25.5in the other half (thus the
array was more happy).

Bias in this task was defined as the difference between the aver-
ageresponses of a participantacross all trials and the actual average.
The actual average in the task was 0.5, as responses were coded as
either 1 (more sad) or O (more happy), and exactly half of the trials
were more sad and half were more happy. Mathematically, the bias
isexpressed as:

1 n
Bias=—->"C;— 0.5
n i=1

Where n denotes the total number of data points and C; denotes the
classification assigned to each data point (C;=1for a more sad classifi-
cationand C;= 0 foramore happy classification). A positive bias indi-
cates atendency towards classifying responses as more sad, whereas
anegative bias suggests a leaning towards classifying responses as
more happy. For example, if a participant were to classify 0.7 of the
arrays asmoresad, their biaswould be 0.7 - 0.5 = 0.2, whereas if they
were to classify 0.3 of the arrays as more sad, their bias would be
0.3-0.5=-0.2.

Consistent with previous studies showing that interpretation of
anambiguous valence is more likely to be negative under short encod-
ing times®*¢, participants showed aslight but significant tendency to
report that the faces were more sad. In particular, they categorized
53.08% of the arrays as more sad, which is a greater proportion than
would be expected by chance (permutation test against 50%: P= 0.017;
d=0.34;95% confidence interval (Cl),,esaa = 0.51t0 0.56; greencirclein
Fig.le; see also Supplementary Results for estimation of the bias by psy-
chometric functionanalysis). The bias was much larger inthe first block
than subsequent blocks (Mygei; = 56.72%; Myjocis2-4 = 51.87%; permuta-
tion test comparing the first block with the rest: P=0.002; d = 0.46;
95% Cl=0.02to 0.08), suggesting that the participants corrected
their bias over time.

Fig.1|Human-Alinteraction creates afeedback loop that makes humans
more biased (experiment1). a, Human-Alinteraction. Human classifications
inan emotion aggregation task are collected (level 1) and fed to an Al algorithm
(CNN; level 2). A new pool of human participants (level 3) then interact with the
Al. Duringlevel 1 (emotion aggregation), participants are presented with an

array of 12 faces and asked to classify the mean emotion expressed by the faces as
more sad or more happy. During level 2 (CNN), the CNN is trained on human data
from level 1. During level 3 (human-Alinteraction), anew group of participants
provide their emotion aggregation response and are then presented with the
response of an Al before being asked whether they would like to change their
initial response. b, Human-human interaction. This is conceptually similar to the
human-Alinteraction, except the Al (level 2) is replaced with human participants.
The participantsin level 2 are presented with the arrays and responses of the
participantsin level 1(training phase) and then judge new arrays on their own as
either more sad or more happy (test phase). The participantsin level 3 are then
presented with the responses of the human participants fromlevel 2 and asked
whether they would like to change their initial response. ¢, Human-Al-perceived-
as-humaninteraction. This condition is also conceptually similar to the human-Al

interaction condition, except participantsinlevel 3 are told they are interacting
with another human when in fact they are interacting with an Al system (input: Al;
label: human). d, Human-human-perceived-as-Alinteraction. This condition is
similar to the human-humaninteraction condition, except that participantsin
level 3 are told they are interacting with Alwhen in fact they are interacting with
other humans (input: human; label: Al). e, Level 1and 2 results. Participantsin level
1(greencircle; n=50) showed a slight bias towards the response more sad. This
bias was amplified by Alinlevel 2 (blue circle), but not by human participantsin
level 2 (orange circle; n = 50). The P values were derived using permutation tests.
Allsignificant Pvalues remained significant after applying Benjamini-Hochberg
false discovery rate correctionat a = 0.05.f, Level 3 results. When interacting with
the biased Al, participants became more biased over time (human-Alinteraction;
blueline). In contrast, no bias amplification was observed when interacting with
humans (human-humaninteraction; orange line). When interacting with an
Allabelled as human (human-Al-perceived-as-humaninteraction; grey line) or
humans labelled as Al (human-Al-perceived-as-humaninteraction; pink line),
participants’ biasincreased but less than for the human-Alinteraction

(n=200 participants). The shaded areas and error bars represent s.e.m.
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Table 1| Accuracy and bias in the training data and CNN classifications

Labels Objective ranking

(accuracy=100%;

Objective ranking +
minor bias

Random labels + minor bias
(accuracy=50%;

Participant
classifications

bias=0%) (accuracy=97%; (accuracy=63%; bias=3%)
bias=3%) bias=3%)
Accuracy-objective labels 96% 94% 66% 50%
Accuracy-training labels 96% 92% 69% 53%
Bias 1% 3% 15% 50%

Training was conducted using four different label sets: (1) objective (based on morphing ranking scores); (2) objective with a 3% bias; (3) participant classifications; and (4) random labels with a
3% bias. The predictions of the model were assessed on an out-of-sample test set of 300 arrays. Accuracy and bias were evaluated with respect to the objective labels and with respect to the

labels the models were trained on (training labels).

Al trained on biased human data amplifies the bias. Next, we used
aCNN’ to classify each array of faces into more happy or more sad. As
detailed below, the CNN amplified the classification bias observed in
the human participants (see Methods for further details of the model).

First, to test the accuracy of the model, we trained it on the 5,000
arraysthatwere presented tothe participantsinlevel1(5,000 arrays = 50
participants x 100 arrays), with class labels based on the objective rank-
ing scores of the arrays (that is, not the human labels). The model was
then evaluated ona300 out-of-sample test set and showed a classifica-
tionaccuracy of 96%, suggesting that it was highly accurate and did not
showabiasiftrained on non-biased data (see Table 1). Next, we trained
the model on class labels defined based on the human classification
(5,000 samples of arrays; Fig. 1a) and evaluated it on 300 arrays in an
out-of-sample test set. The model classified the average emotion as
more sad in 65.33% of the cases, despite only 50% of the arrays being
moresad. Thisnumber was significantly greater than would be expected
by chance (permutation testagainst 50%: P < 0.001; 95% Cl ;,resaq = 0.60
to 0.71; blue circle in Fig. 1e) and significantly greater than the bias
observedinthe humandata (level 1), whichwas only 53% (permutation
test: P<0.001; d=1.33; 95% Cl = 0.09 to 0.14; Fig. 1e). In other words,
the Alalgorithmgreatly amplified the humanbiasembeddedin the data
itwas trained on. Similar results were obtained for CNNs with different
architectures, including ResNet50 (ref. 47; see Supplementary Results).

Apossiblereasonforthebiasamplification of the Alis that it exploits
biasesinthe datatoimproveits predictionaccuracy. This should happen
more when the dataare noisy or inconsistent. To test this hypothesis, we
retrained the model withtwo new sets of labels. First, we used non-noisy
labels (that is, based on the objective ranking scores of the arrays), but
induced aminor bias by switching 3% of the labels. Thus, 53% of the labels
were classified as more sad. Second, we used very noisy labels (random
labels), inwhichwe alsoinduced a3%bias. If the bias amplification were
duetonoise, the bias of the latter model should be higher than that of the
former. Theresults confirmedthis hypothesis (Table1): the average bias
ofthe modeltrained onthe accurate labels with aminor bias was exactly
3%, whereas the average bias of the model trained on the random labels
withabias of 3% was 50% (that is, the model classified 100% of arrays as
moresad). Theseresultsindicate that the bias amplification of the CNN
modelisrelated to the noise inthe data.

Interaction with biased Al increases human bias. Next, we set out to
examine whether interacting with the biased Al algorithm would alter
humanjudgements (Fig. 1a; level 3). To this end, we first measured par-
ticipants’ baseline performance on the emotion aggregation task for
150 trials, so that we could compare their judgements after interacting
with the Al versus before. As in level 1, we found that participants had
a small bias at first (M1 = 52.23%), which decreased in subsequent
blocks, (Myoes 2-s = 49.23%; permutation test testing the first block
against therest of the blocks: P=0.03; d = 0.31; 95% Cl = 0.01t0 0.06).
The next question was whether interacting with Alwould cause the bias
toreappearin humans and perhaps evenincrease.

To test this hypothesis, on each of 300 trials, participants first
indicated whether the array of 12 faces was more sad or more happy.

They were then presented with the response of the Al to the same array
(participants were told that they “will be presented with the response of
anAlalgorithmthatwas trained to performthe task”). They were then
asked whether they would like to change their initial response or not
(thatis, from more sad to more happy or vice versa). The participants
changed their response on32.72% (+2.3% s.e.) of the trialsinwhich the
Al provided a differentresponse and on 0.3% (+0.1% s.e.) of the trialsin
whichthe Al provided the same response as they did (these proportions
are significantly different: permutation test: P<0.001; d =1.97; 95%
CI=0.28t00.37). Further study (Supplementary Experiment 1) showed
that when notinteracting with any associate, participants changed their
decisions only on 3.97% of trials, which was less than when interact-
ing with a disagreeing Al (permutation test: P < 0.001; d = -2.53; 95%
Cl=-0.57t0-0.42) and more than when interacting with an agreeing
Al (permutation test: P< 0.001; d = 0.98; 95% Cl = 0.02 to 0.05).

The primary question of interest, however, was not whether par-
ticipants changed their response after observing the Al's response.
Rather, it was whether over time their own response regarding anarray
(before observing the Al'sresponse to that specificarray) became more
and more biased due to previous interactions with the Al. That is, did
participants learn to become more biased over time?

Indeed, whereas in the baseline blocks participants classified on
averageonly 49.9% (+1.1% s.e.) of the arrays as more sad, wheninteracting
with the Al this rate increased significantly to 56.3% (+1.1% s.e.; permu-
tation test for interaction blocks against baseline: P< 0.001; d = 0.84;
95% Clmoresaq = 0.54 10 0.59). The learned bias increased over time: in the
firstinteractionblock it was only 50.72%, whereasin thelast interaction
blockit was 61.44%. Thisincrease in bias was confirmed by alinear mixed
model predicting a higher rate of more sad classifications as the block
number (afixed factor) increased, withrandomintercepts and slopes at
the participantlevel (b =0.02; ¢(50) = 6.23; P < 0.001; Fig. 1f).

These results demonstrate an algorithmic bias feedback loop;
training an Al algorithm onaset of slightly biased human dataresultsin
thealgorithm amplifyingit. Subsequentinteractions of other humans
with this algorithm further increase the humans’ initial bias levels,
creating a feedback loop.

Human-human interactions did not amplify bias

Next, weinvestigated whether the same degree of bias contagion occurs
ininteractions involving only humans. To this end, we used the same
interactionstructure as above, except the Al system was replaced with
human participants (Fig. 1b).

Humans exhibit a small judgement bias. The responses used in the
first level of the human-human interaction were the same as those
used inthe human-Alinteraction described above.

Humans trained on human data do not amplify bias. Conceptually
similar to Al algorithm training, here we aimed to train humans on
human data (Fig. 1b; level 2). The participants were presented with
100 arrays of 12 faces. They were told they would be presented with the
responses of other participantswho performed the task before.Foreach
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of the 100 arrays, they observed the response of a pseudo-randomly
selected participant from level 1 (see Methods for further details).
Thereafter, they judged ten new arrays on their own (as either more
sad or more happy). To verify that the participants attended to the
responses of the other level 1 participants, they were asked to report
them on 20% of the trials (randomly chosen). Participants who gave
anincorrect answer on more than 10% of the trials (and thus were not
attending the task; n =14), were excluded from the experiment.

Participants characterized the arrays as more sad 54.8% of the
time, which is more than would be expected by chance (permutation
test against 50%: P=0.007; d = 0.41; 95% Clre saq = 52 t0 58%). Criti-
cally, this result did not differ from that of level 1 human participants
(permutation test level 1 humans versus level 2 humans: P = 0.43;
d=0.11;95% CI=-0.02 to 0.06; Fig. 1e), but was significantly lower
than for the Al algorithm, which characterized 65.13% of the arrays as
moresad (permutation test level 2 humans againstlevel 2 Al: P < 0.001;
d=0.86;95%Cl=-0.07t0-0.013; Fig. 1e). This difference was unlikely
tohavebeendriven by variationsin training sample sizes, as the effect
was observed even when Al and human participants were trained on
identical datasets (Supplementary Experiment 2). Furthermore, the
results were generalized to a different training method, in which par-
ticipants were incentivized to actively predict the responses of other
participants (Supplementary Experiment 3).

In conclusion, unlike the Al, human bias was not amplified after
being trained onbiased human data. Thisis not surprising, as the level
of bias participants in level 2 naturally exhibit is probably the same as
the one they were trained on. Moreover, unlike Al systems, humans
base their judgements on factors that go beyond the training session,
such as previous experiences and expectations.

Human-human interaction does not increase bias. Next, we exposed
anew pool of participants (n = 50) to the judgements of humans from
level 2. The task and analysis were identical to those described for
level 3 of the human-Al interaction (except, of course, participants
wereinteracting with humans, which they were made aware of; Fig. 1b).

Before being exposed to the other human’s response, participants
completed five baseline blocks. Asinlevels1and 3 (human-Alinterac-
tion), participants showed asignificant bias during the first block (M, o«
1=53.67%) which disappeared over time (M, -5 = 49.87%; permuta-
tion test for the first baseline block against the rest of the baseline
blocks: P=0.007;d=0.40;95% Cl=0.01t0 0.06).

Next, participants interacted with other human participants
(human-humaninteraction;level 2). As expected, participants changed
their classification more when the other participants disagreed with
them (11.27 £ 1.4% s.e.) thanwhen they agreed with them (0.2 + 0.03% s.e.)
(permutation test comparing the two: P< 0.001; d =1.11; 95% CI=0.08
t00.14) and lessthan wheninteracting with a disagreeing Al (which was
32.72%; permutation test comparing the response change wheninteract-
ing with adisagreeing Al compared with interacting with adisagreeing
human:P<0.001;d=1.07;95%Cl=0.16 to 0.27).

Importantly, there was no evidence of learned bias inthe human-
humaninteraction (Fig. 1f). Classification rates were no different when
interacting with other humans (M. = 51.45 £ 1.3% s.e.) than baseline
(50.6 £1.3% s.e.) (permutation test for interaction blocks against base-
line: P=0.48;d = 0.10; 95% Cl,,oresaa = —0.01t0 0.03) and did not change
over time (b=0.003;t(50)=1.1; P=0.27).

Taken together, these results indicate that human bias is signifi-
cantly amplified inahuman-Alinteraction, moreso thanininteractions
between humans. These findings suggest that the impact of biased Al
systems extends beyond their own biased judgement to their ability to
bias human judgement. This raises concerns for human interactions
with potentially biased algorithms across different domains.

Al's output and human perception of Al shapeitsinfluence. A question
that arises is whether participants became more biased when

interacting with the Al system compared with humans because the Al
provided more biased judgements, because they perceived the Al sys-
tem differently than other humans, or both. To address this question,
werantwo additionaliterations of the experiment. In thefirstiteration
(Al perceived as human), participants interacted with an Al system
but were told they were interacting with another human participant
(Fig.1c).Inthe seconditeration (human perceived as Al), participants
interacted with an Al system but were told they were interacting with
another human participant (Fig. 1d).

To this end, new pools of participants (n=50 per condition)
wererecruited. First, they performed the baseline test described above and
then they interacted with their associate (level 3). When interacting with
the Al(whichwasbelieved tobe ahuman) participants’biasincreased over
time: in the first interaction block it was only 50.5%, whereas in the last
interactionblock it was 55.28% (Fig. 1f). The increase in bias across blocks
was confirmed by a linear mixed model predicting a higher rate of
more sad classifications as the block number (a fixed factor) increased,
with random intercepts and slopes at the participant level (b =0.01;
t(50) =3.14; P< 0.001). Similar results were obtained for the human-
human-perceived-as-Alinteraction. Thebiasincreased across blocks (from
49.0% in the first block to 54.6% in the last), as was confirmed by a linear
mixedmodel (b =0.01;£(50) =2.85; P=0.004;Fig. If). Inboth cases, the bias
was greater than at baseline (human-Al perceived as human: M, =3.85
(permutation test comparing with baseline: P=0.001; d = 0.49; 95%
CI=0.02t00.06); human-human perceived as Al: M, ;,, = 2.49 (permutation
test comparing with baseline: P=0.04; d=0.29;95% Cl = 0.01t0 0.05)).

Was the induced bias a consequence of the type of input (Al ver-
sus human) or the perception of that input (perceived as Al versus
perceived as human)? To investigate this, we submitted the induced
bias scores (the percentage of more sad judgements minus the base-
line percentage of more sad judgements) into a 2 (input: Al versus
human) x 2 (label: Al versus human) analysis of variance (ANOVA) with
time (blocks 1-6) as a covariate (Fig. 1f). The results revealed interac-
tions between input and time (F(4.55, 892.35) = 3.40; P=0.006) and
between label and time (F(4.55,892.35) =2.65; P=0.026).In addition,
there were main effects of input (F(1,196) = 9.45; P=0.002) and time
(F(4.55, 892.35) =14.80; P < 0.001). No other effects were significant
(all Pvalues > 0.06). Thus, asillustrated in Fig. 1f, both the Al'sinput and
its label contributed to enhanced bias in humans over time.

Finally, we assessed the rate of decision changes among partici-
pants. Participants were more likely to change their classification when
their associate disagreed withthem. Inhuman-Al-perceived-as-human
interactions, decision changes occurred atarate of16.84% (+1.2% s.e.)
when there was a disagreement, compared with a mere 0.2%
(+£0.05% s.e.) when agreeing (permutation test comparing the two:
P<0.001; d=1.22;95% Cl = 0.13 to 0.20). Similarly, for the human-
human-perceived-as-Al condition, decision changes were observed
in31.84% (+2.5% s.e.) when disagreement existed, compared with 0.4%
(£0.1% s.e.) in cases of agreement (permutation test comparing the two:
P<0.001;d=1.7;95%Cl =0.26 t0 0.36).

To quantify the effects of input and label on decision changes in
cases of disagreement, we submitted the percentage of decision change
intoa2 (input: Alversus human) x 2 (label: Al versus human) ANOVA with
time (blocks 1-6) as a covariate. The results revealed that both the Al's
input (F(1,196) =7.05; P=0.009) andits label (F(1,196) = 76.30; P < 0.001)
increased the likelihood of a decision change. These results remained
consistent after applying Welch’s correction to address violations of
the homogeneity of variance assumption: for Al'sinput £(1,197.92) =5.11
and P=0.02and for Al'slabel F(1,175.57) = 74.21and P< 0.001. All other
main effects and interactions were not significant (all P values > 0.13).

Biased algorithms bias decisions, whereas accurate ones
improve them

Next, we sought to generalize the above results to different types of
algorithm and domain. In particular, we aimed to mimic a situation
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in which humans are not a priori biased, but rather Al bias emerges
for other reasons (for example, if it was trained on unbalanced data).
To this end, we employed a variant of the random dot kinematogram
(RDK) task**™', in which participants were presented with an array of
moving dots and asked to estimate the percentage of dots that moved
from left toright onascaleranging from 0% (no dots moved fromleft to
right) to100% (all dots moved from left to right). To estimate baseline
performance, participants first performed the RDK task on their own
for 30 trials and reported their confidence on a scale ranging from
not confidentatall to very confident (Fig.2a). Across trials, the actual
average percentage of dots that moved rightward was 50.13 + 20.18%
(s.d.), which was not significantly different from 50% (permutation
test against 50%: P=0.98; d = 0.01; 95% Cl = 42.93 to 57.33%), and the
average confidence was 0.56 £ 0.17 (s.d.).

To examine whether and how different algorithmic response
patterns affect human decision-making, we used three simple algo-
rithms: accurate, biased and noisy. The accurate algorithm always
indicated the correct percentage of dots that moved from left to
right (Fig. 2b; blue distribution). The biased algorithm provided sys-
tematically upward biased estimates of dots that moved to the right
(Fig. 2b; orange distribution; My, = 24.96). The noisy algorithm pro-
vided responses that were equal to those of the accurate algorithm
plus Gaussian noise (s.d. =30; Fig. 2b; red distribution). The biased
and noisy algorithms had the same absolute error (Methods). The
algorithms used here were hard coded to allow full control over
their responses.

On each trial, participants first provided their judgement and
confidence and then observed their own response and a question mark
where the algorithm response would later appear (Fig. 2c). They were
asked to assign weight to their own response and to that of the algo-
rithm on a scale ranging from 100% you to 100% Al (Methods). Thus,
if a participant assigned a weight of w to their own response, the final
joint decisionwould be:

Final joint decision
= w X (participant’s response) + (1 — w) x (Al's response)

This weighting task is analogous to the change decision task in
experiment 1; however, here we used a continuous scale instead of a
binary choice, allowing us to obtain a finer assessment of participants’
judgements.

After participants provided their response, the response of the Al
algorithm was revealed (Fig. 2c). Note that the Al algorithm response
was exposed only after the participantsindicated their weighting. This
was doneto prevent participants fromrelying on the concrete response
of the algorithm on a specific trial, instead making them rely on their
global evaluation of the algorithm. The participants interacted with
each algorithm for 30 trials. The order of the algorithms (bias, noisy
oraccurate) was counterbalanced.

Bias in the RDK task was defined as follows:

Zlf'zl(Participant's response; — Evidence;)
n

Bias =

whereiandn correspondtotheindex of the present trial and the total
number of trials, respectively. Evidence corresponds to the percentage
of dots that moved rightward in the i-th trial. To compute Al-induced
biasin participants, we subtracted the participant’s biasin the baseline
block from the bias in the interaction blocks.

Al-induced bias = BiasAl interaction blocks — Biasbaseline

At the group level, no systematic bias in baseline responses was
detected (meanresponse at baseline = 0.62; permutation test against
0:P=0.28;d=0.1;95% Cl =-0.48t01.76).

To define accuracy, we first computed an error score for each
participant:

27:1|Participant’s response; — Evidence;|
n

Error =

Then, this quantity was subtracted from the error score in the
baseline block, indicating changesinaccuracy.

Al-induced accuracy change = Errory,geiine — ErTOr A interaction blocks

Thatis, if errors when interacting with the Al (second quantity)
were smaller than baseline errors (first quantity), the change would be
positive, indicating that participants became more accurate. However,
iferrorswheninteracting with the Al (second quantity) were larger than
duringbaseline (first quantity), the change would be negative, indicat-
ing that participants became less accurate when interacting with the Al

The results revealed that participants became more biased
(towardstheright) wheninteracting with the biased algorithmrelative to
baseline performance (Myis piasedan = 266 and My paseiine = 0-62; permu-
tationtest: P=0.002;d =0.28;95% Cl = 0.76 t0 3.35; Fig. 2d) and relative
to when interacting with the accurate algorithm (M (accurate ay = 1.26;
permutationtest: P=0.006;d = 0.25;95% Cl = 0.42t02.37; Fig.2d) and
the noisy algorithm (Myias moisy an = 1.15; permutation test: P= 0.006;
d=0.25;95%Cl=0.44102.56;Fig.2d). No differences in bias were found
betweenthe accurate and noisy algorithms, nor wheninteracting with
these algorithmsrelative to baseline performance (all P values > 0.28).
See also Supplementary Results for analysis of the Al-induced bias on
atrial-by-trial basis.

The Al-induced bias was replicated in a follow-up study (n=50;
Methods) in which participants interacted exclusively with a biased
algorithm across five blocks (M,;,s = 5.03; permutation test: P < 0.001;
d=0.72;95% Cl =3.14t0 6.98; Fig. 2e). Critically, we found a significant

Fig. 2| Abiased algorithm produces human bias, whereas anaccurate
algorithm improves human judgement. a, Baseline block. Participants
performed the RDK task, in which an array of moving dots was presented for

1s. They estimated the percentage of dots that moved from left to right and
reported their confidence. b, Algorithms. Participantsinteracted with three
algorithms: accurate (blue distribution), biased (orange distribution) and noisy
(red distribution). ¢, Interaction blocks. Participants provided theirindependent
judgement and confidence (self-paced) and then observed their own response
and a question mark where the Al algorithm response would later appear.
Participants were asked to assign weights to their response and the response

of the algorithm (self-paced). Thereafter, the response of the algorithm was
revealed (2 s). Note that the Al algorithm’s response was revealed only after the
participantsindicated their weighting. As a result, they had to rely on their global
evaluation of the Albased on previous trials. d, Al-induced bias. Interacting with
abiased Al resulted in significant human bias relative to baseline (P values shown
inred) and relative to interactions with the other algorithms (P values shown

inblack; n=120). e, Wheninteracting with a biased algorithm, Al-induced bias
increases over time (n = 50). f, Al-induced accuracy change. Interacting with an
accurate Al resulted in a significantincrease in humanaccuracy (that is, reduced
error) relative to baseline (Pvalues shown in red) and relative to interactions
with the other algorithms (Pvalues showninblack; n =120). g, When interacting
with anaccurate algorithm, Al-induced accuracy increases over time (n = 50).
h,i, Participants perceived the influence of the accurate algorithm on their
judgementsto be greatest (h; n=120), even though the actual influence of the
accurate and biased algorithms was the same (i; n=120). The thin grey lines and
circles correspond to individual participants. Ind and f, the circles correspond
to group means, the central lines represent median values and the bottom and
top edges are the 25th and 75th percentiles, respectively.Ineand g, the error
barsrepresents.e.m. The Pvalues were derived using permutation tests. All
significant P values remained significant after applying Benjamini-Hochberg
false discovery rate correctionat a = 0.05.
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linear relationship over time (b =1.0; t(50) = 2.99; P=0.004; Fig. 2e),
indicating that the more participants interacted with the biased
algorithm, the more biased their judgements became. The learning of
biasinduced by the Alwas also supported by acomputational learning

model (Supplementary Models).

Interaction with the accurate algorithm increased the accuracy
of participants’ independent judgements compared with base-
line performance (Merrors (accurate Al) — 13.48, Merrors (baseline) = 15.03 and
Maccuracy change (accurate an = 1.55; permutation test: P< 0.001; d = 0.32; 95%

Cl=0.69t02.42;Fig.2f) and compared with wheninteracting with the
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biased algorithm (M;ors biasea an = 14.73 and M,ccyracy change (biased ay = 0-03;
permutationtest: P< 0.001;d = 0.33;95% Cl = 0.58 to 1.94; Fig. 2f) and
the nOiSy algorithm (Merrors(noisyAl) =14.36and Maccuracychange(noisyAI) =0.67;
permutation test: P=0.01; d = 0.22; 95% Cl = 0.22 to 1.53; Fig. 2f). No
differences in induced accuracy change were found between the
biased and noisy algorithms, nor were there differencesin errors when
interacting with these algorithms relative to baseline performance
(all Pvalues > 0.14; Fig. 2f).

The Al-induced accuracy change was replicated in a follow-up
study (n=50; Methods) in which participants interacted exclusively
with an accurate algorithm across five blocks (M, curacy change = 3-55;
permutation test: P<0.001; d = 0.64; 95% Cl =2.14 to 5.16; Fig. 2g).
Critically, we found a significant linear relationship for the Al-induced
accuracy change over time (b = 0.84; t(50) = 5.65; P< 0.001; Fig. 2g),
indicating that the more participants interacted with the accurate algo-
rithm, the more accurate their judgements became. For participants’
confidence ratingand weight assignment decisions, see Supplementary
Results.

Importantly, the increase in accuracy when interacting with the
accurate Al could not be attributed to participants copying the algo-
rithm’saccurate response, not could the increased bias wheninteract-
ingwith the biased algorithm be attributed to participants copying the
algorithm’s biased responses. This is because we purposefully designed
the task such that participants would indicate their judgements on each
trial before they observed the algorithm’s response. Instead, the par-
ticipants learned to provide more accurate judgements in the former
caseand learnedto provide more biased judgementsin the latter case.

Participants underestimate the biased algorithm’s impact. We
sought to explore whether participants were aware of the substantial
influence the algorithms had on them. To test this, participants were
asked to evaluate to what extent they believed their responses were
influenced by the different algorithms they interacted with (Methods).
AsshowninFig. 2h, participants reported being moreinfluenced by the
accurate algorithm compared with the biased one (permutation test:
P<0.001;d=0.57;95% Cl = 0.76 to 1.44) and the noisy one (permutation
test: P<0.001; d = 0.58;95% Cl=0.98 t01.67). No significant difference
was found between how participants perceived the influence of the
biased and noisy algorithms (permutation test: P=0.11; d = 0.15; 95%
Cl=-0.05t00.52).

In reality, however, the magnitude by which they became more
biased wheninteracting with abiased algorithm was equal to the mag-
nitude by which they became more accurate when interacting with
an accurate algorithm. We quantified influence using two different
methods (Methods) and both revealed the same result (Fig. 2i; z-scoring
across algorithms: permutationtest: P=0.90;d=-0.01;95% Cl =-0.19
to 0.17; as a percentage difference relative to baseline: permutation
test: P=0.89;d=-0.02;95% Cl=-1.44 t01.90).

Theseresults show thatindifferent paradigms, and under different
response protocols, interacting with abiased algorithm biases partici-
pants’independent judgements. Moreover, interacting with an accu-
rate algorithm increased the accuracy of participants’ independent
judgements. Strikingly, the participants were unaware of the strong
effect that the biased algorithm had on them.

Real-world generative Al-induced bias in social judgements

Thus far, we have demonstrated that interacting with biased algo-
rithms leads to more biased human judgements in perceptual and
emotion-based tasks. These tasks allowed for precise measurements
and facilitated our ability to dissociate effects. Next, we aimed to gener-
alize these findings to social judgements by using Al systems commonly
employed in real-world settings, thereby increasing the ecological
validity of our results®*>* (see also Supplementary Experiment 5 for a
controlled experiment examining asocial judgement task). Tothisend,
we examined changes to human judgements following interactions

with Stable Diffusion—a widely used generative Al system designed
to create images based on textual prompts®>.

RecentstudieshavereportedthatStable Diffusionamplifies existing
social imbalances. For example, it over-represents White men in
high-power and high-income professions compared with other
demographic groups®*®. Such biases can stem from different sources,
including problematic training data and/or flawed content moderation
techniques®. Stable Diffusion outputs are used in diverse applications,
such as videos, advertisements and business presentations. Conse-
quently, these outputs have the potential to impact humans’ belief
systems, even when anindividual does not directly interact with the Al
system but merely observes its output (for example, on social media,
inadvertisements or during a colleague’s presentation). Here, we test
whether interacting with Stable Diffusion’s outputs increases bias in
human judgement.

To test this, we first prompted Stable Diffusion to create: “A color
photo of a financial manager, headshot, high-quality” (Methods). As
expected, theimages produced by Stable Diffusion over-represented
White men (85% of images) relative to their representation in the
population. For example, in the United States only 44.3% of financial
managers are men®’, of whom a fraction are White, and in the United
Kingdom only about half are men*®, of whom a fraction are White. In
other Western countries the percentage of financial managers who are
White menis alsoless than 85% and in many non-Western countries the
numbers are probably even lower.

Next, we conducted anexperiment (n = 100) to examine how par-
ticipants’judgements about who is most likely to be afinancial manager
would alter after interactions with Stable Diffusion. To this end, before
and after interacting with Stable Diffusion, participants completed 100
trials. On eachtrial, they were presented with images of six individuals
fromdifferentrace and gender groups: (1) White men; (2) White women;
(3) Asian men; (4) Asian women; (5) Black men; and (6) Black women
(seeFig.3a; stage 1; baseline). Theimages were taken from the Chicago
Face Database® and were balanced in terms of age, attractiveness
and racial prototypicality (Methods). On each trial, participants were
asked: “which person is most likely to be a financial manager?”. They
responded by clicking on one of the images. Before this, participants
were provided with a definition of financial manager (Methods). We
were interested in whether participants’ responses would gravitate
towards White men after interacting with Stable Diffusion outputs.

Before interacting with Stable Diffusion, participants selected
White men, White women, Asian men, Asian women, Black men and
Black women 32.36, 14.94, 14.40, 20.24, 6.64 and 11.12% of the time,
respectively. Although there is no definitive ground truth here, based
on demographic data, White men is estimated not to be a normative
response (for details, see Supplementary Results). Next, participants
were exposed to the outputs of Stable Diffusion (see Fig. 3a; stage
2; exposure). Specifically, participants were told that they would be
shown three images of financial managers generated by Al (Stable
Diffusion) and received a brief explanation about Stable Diffusion
(Methods). Then, on each trial, participants viewed three images of
financial managers that were randomly chosen from those generated
by Stable Diffusionfor1.5s. This brief exposure time mimics common
real-world interaction with Al-generated content on platforms such as
social media, news websites and advertisements. Such encounters are
often brief, with users rapidly scrolling through content. For example,
the average viewing time forimages on mobile devicesis1.7 s (ref. 60).

Instage 3 (Fig. 3a; stage 3; post-exposure), participants repeated
thetask fromstage 1. The primary measure of interest was the change
in participants’ judgements. The data were analysed using a mixed
model multinomial logistic regression with exposure (before versus
after exposure to Al images) as a fixed factor, with random intercepts
andslopes at the participantlevel. This model was chosen because the
dependent variable involved a choice from six distinct and unordered
categories (see Supplementary Results for an alternative analysis).
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Stage 1: baseline

Which person is most likely to
be a financial manager?
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Induced bias
(stage 3 choice - stage 1 choice) (%)

Fig. 3 | Interaction with a real-world Al system amplifies human bias (n = 100).
a, Experimental design. The experiment consisted of three stages. Instage 1,
participants were presented with images featuring six individuals from different
race and gender groups: a White man, a White woman, an Asian man, an Asian
woman, a Black man and a Black woman. On each trial, participants selected the
person who they thought was most likely to be a financial manager. In stage 2, for
each trial, three images of financial managers generated by Stable Diffusion were
randomly chosen and presented to the participants. In the control condition,
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participants were presented with three images of fractals instead. In stage

3, participants repeated the task from stage 1, allowing measurement of the
change in participants’ choices before versus after exposure to the Al-generated
images. b, Theresults revealed a significant increase in participants’ inclination
to choose White men as financial managers after being exposed to Al-generated
images, but not after being exposed to fractal neutral images (control). The error
barsrepresents.e.m.Face stimuliinareproduced fromref. 59 under a Creative
Commonslicence CCBY 4.0.

Thefindings revealed asignificant effect for exposure (F(5, 62) =5.89;
P<0.001; Fig. 3b), indicating that exposure to the Al images altered
human judgements. In particular, exposure increased the likelihood
of choosing White men as financial managers (Myetore exposure = 32.36%;
Mteer exposure = 38.20%) compared with White women (Myetore exposure =
14.94%; M tier exposure = 14.40%; b= 0.26; £ =2.08; P= 0.04;95% Cl = 0.01to
0.50), Asian women (Myecoreexposure = 20-24%; Migier exposure = 17.14%; b= 0.47;
t=3.79; P<0.001; 95% Cl=0.22 to 0.72), Black men (Myetore exposure =
6.64%; Mier exposure = 5-62%; b= 0.65; t =3.04; P=0.004; 95% Cl = 0.22
t0 1.08) and Black women (Myetore exposure = 11.12%; Migier exposure = 10.08%;
b=0.47;t=2.46; P=0.02; 95% Cl=0.09 to 0.87). No significant dif-
ference was found between White men and Asian men (Myfore exposure =
14.70%; Mgeer exposure = 14.56%; b= 0.28; £ =2.01; P=0.051; 95% Cl = -0.001
t00.57).

We also ranthis experiment withanother group of participants to
control for order effects. The controls were never exposed to the Stable
Diffusion images of financial managers; instead, they were exposed
to neutralimages of fractals (see Fig. 3a; stage 2; exposure). The same
analysis was performed for the control condition as for the treatment
condition. As expected, nosignificant effect of exposure to neutral frac-
tals was found for the control condition (F(5, 67) =1.69; P= 0.15; Fig. 3b).
Additionally, nosignificant differences were observed when comparing
White men (Myetore exposure = 28-42%; Mtierexposure = 27.28%) with each of the
demographicgroups (all P values > 0.06): White women (Myetore exposure =
15.64%; Migeer exposure = 15.36%), Asian men (Myefore exposure = 12.00%;
Mafterexposure = 11'18%)1 Asianwomen (Mbefore exposure — 20.52%; Mafterexposure =
19.74%), Black men (Myesore exposure = 8-78%; Mager exposure = 9-30%) and Black
women (Myetore exposure = 14.64%; M gier exposure = 17.14%). Comparison of

the treatment and control groups indicated that the former showed
a greater increase than the latter in selecting White men after expo-
sureto the imagesrelative to before (permutation test comparing the
change in selecting White men across groups: P=0.02; d=0.46; 95%
CI=0.01t00.13).

These results suggest that interactions with acommonly used Al
system thatamplifiesimbalancesin real-world representationinduce
bias in humans. Crucially, the Al system in this experiment is firmly
rooted in the real world. Stable Diffusion has an estimated 10 mil-
lion users generating millions of images daily®, underscoring the
importance of this phenomenon. These findings were replicated in a
follow-up experiment with slight changes to the task (see Supplemen-
tary Experiment 6).

Discussion

Our findings reveal that human-Alinteractions create afeedbackloop
where even small biases emerging from either side increase subsequent
human error. First, Al algorithms amplify minute biases embedded in
the human data they were trained on. Then, interactions with these
biased algorithmsincreaseinitial humanbiases. A similar effect was not
observed for human-human interactions. Unlike the Al, humans did
not amplify the initial small bias present in the data, possibly because
humans are less sensitive to minor biases in the data, whereas the Al
exploits them to improve its prediction accuracy (see Table 1).

The effect of Al-induced bias was generalized across a range of
algorithms (such as CNN and text-to-image generative Al), tasks and
response protocols, including motion discrimination, emotion aggre-
gation and social-based biases. Over time, as participants interacted
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with the biased Al system repeatedly, their judgements became more
biased, suggesting that they learned to adopt the Al system’s bias.
Using computational modelling (Supplementary Models), we show
that humans learn from interactions with an Al algorithm to become
biased, rather than just adopting the Al's judgement per se. Inter-
estingly, participants underestimated the substantial impact of the
biased algorithm on their judgement, which could leave them more
susceptible toitsinfluence.

We further demonstrated a bias feedback loop in experiments uti-
lizing apopular real-world Al system—Stable Diffusion. Stable Diffusion
tends to over-represent White men when prompted to generate images
of high-power and high-income professionals®. Here, we show that expo-
suretosuch Stable Diffusionimages biases human judgement. This prob-
ably happensinreal-world scenarios whenindividualsinteract with Stable
Diffusion directly and/or encounter images created by Stable Diffusion
onvarious digital platforms, such as social media and news websites.

Together, the present series of experiments demonstrates a
human-Al feedback loop that leaves humans more biased than they
initially were, both due to the Al's signal and to the human percep-
tion of AI®%. These findings go beyond previous research on Al bias
amplification'2%*"%¢ revealing a problem potentially relevant to
various Al systems and decision-making contexts, such as hiring or
medical diagnosis.

The current results uncover a fundamental mechanism of bias
amplificationin human-Alinteractions. Assuch, they underscore the
heightened responsibility that algorithm developers must confront
in designing and deploying Al systems. Not only may Al algorithms
exhibit bias themselves, but they also have the potential to amplify the
biases of humansinteracting with them, creating a profound feedback
loop. The implications can be widespread due to the vast scale and
rapidly growing prevalence of Al systems. Of particular concernis the
potential effect of biased Als on children®, who have more flexible and
malleable knowledge representations and thus may adopt Al systems’
biases more readily.

Itis important to clarify that our findings do not suggest that all
Al systems are biased, nor that all Al-human interactions will create a
bias. Tothe contrary, we demonstrate that when humans interact with
an accurate Al, their judgements become more accurate (consistent
with studies showing that human-Al interaction can improve per-
formance outcomes®®). Rather, the results suggest that when a bias
existsinthe systemit has the potential to amplify viaafeedback loop.
Because biases exist in both humans and Al systems, this is a problem
that should be taken seriously.

Our results indicate that participants learned the Al system’s bias
readily, primarily due to the characteristics of the Al's judgements, but
alsobecause of participants’ perception of the Al (see Fig. 1f; for extensive
discussion, seeref. 62).Specifically, we observed that when participants
weretold they wereinteracting withahumanwheninfact they wereinter-
acting with an Al, they learned the Al's bias to alesser extent than when
they believed they were interacting with an Al (although they did still
significantly learn the bias). This may be because participants perceived
the Al systems as superior to humans on the task®**, Thus, participants
became more biased, even though they were updating their beliefsina
fashion that may be viewed as perfectly rational.

Anintriguing question raised by the current findings is whether the
observed amplification of bias endures over time. Further research is
required to assess the longevity of this effect. Several factors are likely
toinfluence the persistence of bias, including the duration of exposure
to the biased Al, the salience of the bias and individual differences in
the perception of Al systems®’. Nonetheless, even temporary effects
could carry substantial consequences, particularly considering the
scale at which human-Alinteractions occur.

Inconclusion, Alsystems are increasingly integrated into numer-
ous domains, making it crucial to understand how to effectively use
them while mitigating their associated risks. The current study reveals

that biased algorithms not only produce biased evaluations, but sub-
stantially amplify such biases in human judgements, creating a feed-
back loop. This underscores the pressing need to increase awareness
among researchers, policymakers and the public of how Al systems
can influence human judgements. It is possible that strategies aimed
atincreasing awareness of potential biases induced by Al systems may
mitigate their impact—an option that should be tested. Importantly,
ourresults also suggest thatinteracting with an accurate Al algorithm
increases accuracy. Thus, reducing algorithmic bias may hold the
potential toreduce biases in humans, increasing the quality of human
judgement in domains ranging from health to law.

Methods

Ethical statement

This study was conducted in compliance with all of the relevant ethical
regulations and received approval from the ethics committee of Univer-
sity College London (3990/003 and EP_2023_013). All of the participants
provided informed consent before their involvement in the study.

Participants
Atotal of1,401individuals participated in this study. For experiment 1
(level1),n=50 (32women and 18 men; M,,. = 38.74 +11.17 years (s.d.)).
For experiment 1 (human-human; level 2), n =50 (23 women, 25 men
andtwo notreported; M,,. = 34.58 £ 11.87 years (s.d.)). For experiment
1(human-Al;level 3), n =50 (24 women, 24 men and two not reported;
Mo =39.85+14.29 years (s.d.)). For experiment 1 (human-human;
level 3), n=50 (20 women and 30 men; M, = 40.16 +13.45 years
(s.d.)). For experiment 1 (human-Al perceived as human; level 3),
n=50 (15 women, 30 men, four not reported and one non-binary;
M,z = 40.16 £13.45 years (s.d.)). For experiment 1 (human-human
perceived as Al; level 3), n=50 (18 women, 30 men, one not reported
and onenon-binary; M,,. =34.79 £10.80 years (s.d.)). For experiment 2,
n=120 (57 women, 60 men, one other and two not reported;
M, =38.67 £13.19 years (s.d.)). For experiment 2 (accurate algorithm),
n=50 (23 women and 27 men; M, = 36.74 +13.45 years (s.d.)). For
experiment 2 (biased algorithm), n=50 (26 women, 23 men and one
not reported; M,,. = 34.91+ 8.87 years (s.d.)). Forexperiment 3,n =100
(40 women, 56 men and four not reported; M,,. = 30.71£12.07 years
(s.d.)). For Supplementary Experiment 1, n=50 (26 women, 17 men
and seven not reported; M,,. =39.18 +14.01 years (s.d.)). For Supple-
mentary Experiment 2, n =50 (24 women, 23 men, one other and two
not reported; M,,. = 36.45 +12.97 years (s.d.)). For Supplementary
Experiment 3, n=50 (20 women, 29 men and one not reported;
M,g. = 32.05+10.08 years (s.d.)). For Supplementary Experiment
4, n=386 (241 women, 122 men, seven other and 16 not reported;
M,z =28.07 + 4.65 years (s.d.)). For Supplementary Experiment 5,
n=45 (19 women, 23 men, one other and two not reported;
M,y =39.50 £14.55 years (s.d.)). For Supplementary Experiment 6,
n=200 (85 women, 98 men, five other and 12 not reported;
M,z =30.87 £10.26 years (s.d.)).

Sample sizes were determined based on pilot studies to achieve
a power of 0.8 (a = 0.05) using G*Power’°. In each experiment, the
largest n required to detect a key effect was used and rounded up.
Participants were recruited via Prolific (https://prolific.com/) and
received, in exchange for participation, a payment of £7.50 per hour
until April 2022, after which the rate was increased to £9.00 per hour.
Additionally, participantsin experiments1and 2 received abonus fee
ranging from £0.50 to £2,00, which was determined based on perfor-
mance. All participants had normal or corrected-to-normal vision. The
experiments were designed in PsychoPy3 (2022.2.5) and hosted on the
Pavlovia platform (https://pavlovia.org/).

Tasks and analyses
Emotional aggregation task. A/-human interaction. For level 1,
participants performed 100 trials of the emotion aggregation task.
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Oneachtrial, an array of 12 emotional faces, ranging fromsad to happy,
was presented for 500 ms (Fig. 1a). The participantsindicated whether,
on average, the faces were more happy or more sad. Each participant
was presented with 100 unique arrays of faces, which were generated
asdescribed below.

To generate the individual faces used in this task, a total of 50 mor-
phedgreyscale faces were adopted fromref. 41. The faces were created by
matching multiple facial features (forexample, the corners of the mouth
and centres of the eyes) between extreme sad and happy expressions
of the same person (taken from the Ekman gallery™) and then linearly
interpolating between them. The morphed faces ranged from 1 (100%
sad face) to 50 (100% happy face), based on the morphing ratio. These
objective ranking scores of each face correlated well with participants’
subjective perception of the emotion expressed by the face. This was
determined by showing participants the faces one by one before per-
forming the emotion aggregation task and asking them to rate the faces
on ascale from very sad to very happy (self-paced). A linear regression
between the objective rankings of the faces and subjective evaluations
of the participants indicated that the participants were highly sensitive
tothe emotional expressions (b = 0.8; t(50) = 26.25; P< 0.001; R*=0.84).

The 100 arrays of 12 emotional faces were generated as follows. For
50 of the arrays, the 12 faces were randomly sampled (with repetition)
fromauniformdistributionintheinterval[1,50] withamean of 25.5. Then,
for each of these arrays, amirror array was created in which the ranking
score of each face was equal to 51 minus the ranking scores of the face in
theoriginaltrial. Forexample, if the ranking scores of facesin an original
arraywere 21,44, ...,25,theranking scores of thefacesinthe mirror array
were51-21=30,51-44=7,...,51-25=26.Thismethod ensured that for
half of the trials the objective mean ranking of the array was higher than
the mean of the uniformdistribution (mean > 25.5; more happy faces) and
inthe other half it was lower (mean < 25.5; more sad faces). If the objec-
tivemeanranking of anarray was exactly 25.5, the faces were resampled.

Biasinthe emotion aggregation task was defined as a percentage
of more sad responses beyond 50%. As described in the Results, at the
group level the participants showed atendency to classify the arrays of
facesasmore sad (permutation test against 50%: P=0.017; d = 0.34; 95%
Cloresad = 0.51t0 0.56). Similar results were observed when the bias was
quantified using a psychometric function analysis (see Supplementary
Results for more details).

Forlevel 2, the choices of the participantsinlevel1(5,000 choices)
were fed into a CNN consisting of five convolutional layers (with filter
sizes of 32, 64,128,256, 512 and rectified linear unit (ReLU) activation
functions) and three fully connected dense layers (Fig.1a). A0.5drop-
outrate wasused. The predictions of the CNN were calculated ona test
set consisting of 300 new arrays of faces (that is, arrays that were not
includedinthetraining or validation sets). Half of the arraysin the test
set had an objective mean ranking score higher than 25.5 (that is, the
more happy classification) and the other half had a score lower than
25.5 (thatis, the more sad classification).

Forlevel3, participantsfirst performedthe same proceduredescribed
inlevel 1, except they performed 150 trials instead of 100. These trials
were used to measure thebaseline performance of participantsinthe emo-
tion aggregation task. Then, participants performed the emotion aggre-
gation task as in the previous experiment. However, on each trial, after
indicating their choice, they were also presented with the response of an
Alalgorithmfor2 s (Fig.1a). The participants were then asked whether they
wouldliketochangetheir decision (thatis, frommoresadtomorehappyand
vice versa) by clicking on the yes or no buttons (Fig. 1a). Before interact-
ing with the Al, participants were told that they “will be presented with
the response of an Al algorithm that was trained to perform the task”.
Overall, participants performed 300 trials divided into six blocks.

Human-humaninteraction. For level 1, the responsesin the first level of
the human-humaninteraction were the same asthose in the human-Al
interaction.

For level 2, participants first performed the same procedure as
in level 1. Next, they were presented with 100 arrays of 12 faces for
500 ms, followed by the response of another participant from level 1
to the same array, which was presented for 2 s (Fig. 1b). On each trial,
the total numbers of more sad and more happy classifications of the
other participants (up until that trial) were presented at the bottom
ofthe screen. Twotrials were pseudo-randomly sampled from each of
the 50 participantsin level 1. The first trial was sampled randomly and
the second was its matched mirror trial. The responses were sampled
suchthatthey preserved the bias and accuracy of the full set (with dif-
ferences inbias and accuracy not exceeding 1%).

To verify that the participants attended to the task, they were
asked to report the response of the other player on 20% of the trials,
whichwererandomly selected (thatis, they were asked “What was the
response of the other player?” and had to choose between more sad
and more happy). The data from participants whose accuracy scores
were lower than 90% were excluded from further analysis (n =14 par-
ticipants) for lack of engagement with the task.

After completing this part of the experiment, participants per-
formed the emotion aggregation task again on their own for another
ten trials.

For level 3, participants performed the same procedure as
described for human-Alinteraction (level 3), except that here they
interacted with a human associate instead of an Al associate. The
responses of the human associate were pseudo-randomly sampled
from the human-human network (level 2), such that six responses were
pseudo-randomly sampled from each participant (atotal of 300 trials).
Before interacting with the human associate, participants were told
that they “will be presented with the responses of another participant
who already performed the task”.

Human-Al-perceived-as-human interaction.For level 1, the responses
inthefirstlevel were the same as those for the human-Aland human-
humaninteractions.

Level 2 was the same as that in the human-Alinteraction.

For level 3, participants performed the exact same procedure as
inthe human-human interaction. The only difference was that, while
they wereled tobelieve that they “will be presented with the responses
of another participant who already performed the task”, they were in
factinteracting with the Al system trained in level 2.

Human-human-perceived-as-Alinteraction. The responsesin the first
level were the same as those for the human-Al and human-human
interactions.

The second level was the same as that in the human-human
interaction.

For level 3, participants performed the exact same procedure as
inthe human-Alinteraction. The only difference was that, while they
were led to believe that they “will be presented with the response of
an Alalgorithm that was trained to perform the task”, they were in fact
interacting with the human participants from level 2.

RDK task. Main experiment. For the baseline part of this experiment,
participants performed aversion of the RDK task**~' across 30 trials. On
each trial, participants were presented with an array of 100 white dots
moving against agrey background. Oneach trial, the percentage of dots
moving from left to right was one of the following: 6, 16, 22,28, 30, 32,
34,36,38,40,42,44,46,48,50 (presented twice), 52, 54,56, 58, 60, 62,
64,66, 68,70,72,78, 86 or 96%. The display was presented for 1s and
thendisappeared. Participants were asked to estimate the percentage of
dots that moved fromleftto right onascale ranging from 0% left toright
to 100% left to right, as well as to indicate their confidence on a scale
ranging from not confident at all to very confident (Fig. 2a, top panel).

Interaction blocks were then introduced. On each trial, partici-
pants first performed the RDK task exactly as described above. Then,
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they were presented with their response (Fig. 2c) and a question mark
where the Al algorithm response would later appear. They were asked
to assign a weight to each response on a scale ranging between 100%
you to 100% Al (self-paced). The final joint response was calculated
according to the following formula:

Final joint response

= w x (participant’s response) + (1 — w) x (Al's response)

Where w is the weight the participants assigned to their own
response. For example, if the response of the participant was 53% of
the dots moved rightward and the response of the Alwas 73% of the dots
moved rightward and the participants assigned a weight of 40% to their
response, the final joint response was 0.4 x (53%) + 0.6 x (73%) = 65%
of the dots moved rightward. Note that because the Al response was
not revealed until the participants indicated their weighting, partici-
pants had to rely on their evaluation of the Al based on past trials and
could not rely on the response of the Al on that trial. Thereafter, the
Alresponse was revealed and remained on screen for 2 s. Participants
completed three blocks each consisting of 30 trials.

The participantsinteracted with three different algorithms: anaccu-
rate algorithm, a biased algorithm and a noisy algorithm (Fig. 2b). The
accuratealgorithm provided the correct response onall trials. The biased
algorithm provided aresponse that was higher thanthe correctresponse
by 0-49% (mean bias = 24.96%). The noisy algorithm provided responses
similar to those of the accurate algorithm, but with the addition of acon-
siderable amount of Gaussian noise (s.d. =28.46). The error (that s, the
mean absolute difference from the correct response) of the biased and
noisy algorithms was virtually the same (24.96 and 25.33, respectively).

The order of the algorithms was randomized between participants
using the Latin square method with the following orders: (1) accurate,
biased, noisy; (2) biased, noisy, accurate; and (3) noisy, accurate, biased.
Beforeinteracting with the algorithms, participants were told that they
“willbe presented with the response of an Al algorithm that was trained to
performthetask”. Before starting each block, participants were told that
theywould interact with anew and different algorithm. The algorithms
were labelled algorithm A, algorithm B and algorithm C. At the end of
the experiment, the participants were asked the following questions:
(1) “Towhat extent were your responses influenced by the responses of
algorithm A?”; and (2) “How accurate was algorithm A?”. These questions
wererepeated for algorithms Band C. The response to thefirst question
was given on a scale ranging from not at all (coded as 1) to very much
(coded as 7) and the response to the second question was given on a
scaleranging fromnotaccurateatall (coded as1) to very accurate (coded
as 7). To assist participants in distinguishing between the algorithms,
eachalgorithm was consistently represented with the same font colour
(A, green; B, blue; C, purple) throughout the whole experiment.

We used three main dependent measures: bias, accuracy (error)
and the weight assigned to the Al evaluations. Bias was defined as the
mean difference between a participant’s responses and the correct
percentage of dots that moved from left to right. For each participant,
thebiasinthebaseline block was subtracted from thebiasin theinterac-
tionblocks. The resulting difference in bias was compared against zero.
Positive values indicated that participants reported more rightward
movementintheinteraction blocks than atbaseline, whereas negative
valuesindicated the opposite. Error was defined as the mean absolute
difference between a participant’s responses and the correct percent-
age of dots that moved fromleft toright. Inall analyses, for each partici-
pant, theerrorintheinteraction blocks was subtracted from the error
in the baseline blocks. Thus, positive values of this difference score
indicated increased accuracy due to interaction with the Al, whereas
negative values indicated reduced accuracy. The weights assigned
to the Al evaluations were defined as the average weight participants
assigned to the Al response on ascale ranging from -1 (weight of 0% to
the Alresponse) to1(weight of 100% to the Al response).

The influences of the biased and accurate algorithms were quan-
tified using two different methods: relative changes and z-scoring
across algorithms. The relative change in bias was computed by
dividing the Al-induced bias by the baseline bias, while the relative
changein accuracy was computed by dividing the Al-induced accuracy
change by the baseline error. A comparison of the relative changes
in bias and accuracy yielded no significant difference (permutation
test: P=0.89; d=-0.02; 95% Cl =-1.44 to 1.9). The same result was
obtained for z-scoring across algorithms. In this method, we z-scored
the Al-induced bias of each participant when interacting with each
algorithm (thatis, for each participant, we z-scored across algorithms
and not across participants). Therefore, three z-scores were obtained
for each participant, indicating the relative effect of the biased, accu-
rate and noisy algorithms. The same procedure was repeated for the
Al-induced accuracy, resulting in three z-scores indicating the relative
influences of the different algorithms on the accuracy of each partici-
pant. Then, the z-scores of the bias algorithm (for the Al-induced bias)
andthez-scores of the accurate algorithm (for the Al-induced accuracy
change) were compared across participants. No significant difference
was found between them (permutation test: P=0.90; d = -0.01; 95%
Cl=-0.19t00.17).

Effects acrosstime. To examine the Al-induced bias and accuracy effects
acrosstime, we conducted two additional experiments. Inthefirstone,
participants performed the RDK task exactly as described above, except
for onedifference. Instead ofinteracting with accurate, biased and noisy
algorithms, participants interacted only withabiased algorithmacross
five blocks. The second experiment was similar to the first, except for
participantsinteracting with an accurate algorithm across five blocks.

Experiment 3. This experiment aimed to investigate whether exposure
toimages generated by the popular Al system Stable Diffusion®, which
is known to exemplify social imbalances®, increases judgement bias
in humans. To assess this, participants completed a judgement task
before and after viewing Stable Diffusion-generated images. Their
performance was compared with that of a control group in which
participants were presented with fractals images.

Procedure. A total of 100 participants were recruited for the experi-
ment. Participants were randomly assigned to either the Al exposure
group (n=50) or acontrol fractal exposure group (n =50).

The study comprised three stages. Instage 1 (baseline assessment),
the participants completed 100 trials in which they were shown an
image featuring sixindividual headshots and were asked: “Who do you
think is more likely to be a financial manager?” (see Fig. 3a; stage 1).
Participants made their selection by clicking on the chosenimage using
their computer mouse. Before this stage, participants were provided
with a definition of a financial manager (“a person responsible for the
supervision and handling of the financial affairs of an organization”;
taken from the Collins Dictionary).

Instage 2 (exposure), participants in the Al condition completed
100 trialsinwhich they were presented with Stable Diffusion-generated
images of financial managers (three images per trial). The threeimages
were randomly chosen and presented for 1.5 s. Before viewing the
images, participants were presented with a brief description of Stable
Diffusion. Participantsin the control group were shown fractalimages
instead of financial manager images.

In stage 3 (post-exposure), participants completed 100 trials in
which the judgement task from stage 1 was repeated.

The order of the trials was randomized for all stages across
participants.

Stimuli. The stimuliin each trial consisted of images of six individuals
(aWhite man, a White woman, an Asian man, an Asian woman, a Black
man and a Black woman) selected from the Chicago Face Database
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(see the GitHub repository for the exact images used)*’. From each
demographic category, ten images of individuals aged 30-40 years
were chosen. The chosenindividuals were balanced in age, attractive-
ness and racial prototypicality (all P values > 0.16). Each image was
presented against a grey background with a circle framing the face
(seeFig.3a). The locations of the individuals from each demographic
group in the image within each trial were randomly determined.

In the Al exposure condition, Stable Diffusion (version 2.1) was
used to generate 100 images of financial managers, using the prompt:
“A color photo of afinancial manager, headshot, high-quality”. Images
that contained multiple people, unclear faces or distortions were
replaced with other images of the same race and gender. The control
condition featured 100 fractal images of the same size and resolution
astheimages of the financial managers. Thirty naive observers catego-
rized the faces according to race and gender (Cohen’s k = 0.611). Each
image was ultimately classified based on the majority categorization
across the 30 participants. Of the Stable Diffusion-generated images,
85% were classified as White men, 11% as White women, 3% as non-White
men and 1% as non-White women.

Statistical analyses

All of the statistical tests were two sided. Mean comparisons utilized
non-parametric permutation tests, with P values computed using 10°
random shuffles. When parametric tests were employed, normality
was assumed based on the central limit theorem, as all conditions had
sufficiently large sample sizes to justify this assumption. In repeated
measures ANOVAs, the assumption of sphericity was tested using
Mauchly’s test. In case of violation, Greenhouse-Geisser correction
was applied. The equality-of-variances assumption was tested using
Levene’s test. In case of violation, Welch correction was applied.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available at
https://github.com/affective-brain-lab/BiasedHumanAl.

Code availability
Thecoderelatedtothisstudyisavailableathttps://github.com/affective-
brain-lab/BiasedHumanAl.
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Recruitment Participants were recruited via Prolific (https://prolific.ac/) and received a payment of £7.5 per hour in exchange for
participation, as well as a bonus fee ranging from £0.5 to £2.
A potential bias in the current study is self-selection bias. Since participants were recruited through an online platform
(Prolific), there is a possibility that individuals with a higher interest in Al technologies may have been more willing to join the
study. To mitigate this potential bias, the study was advertised as focusing on judgment and decision-making experiment,
without specific mention of Al technologies.
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Study description The study consisted of a series of experiments designed to investigate how human-Al interactions impact human judgments. Each
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either before or after interacting with an Al system. In the focal conditions, the participants were provided with feedback from the Al
system to assess whether and how their judgments would change after receiving it.

The design involved both within-subjects and between-subjects factors, depending on the specific experiment. The within-subject
factor typically involved collecting responses before and after the interaction with the Al, while between-subjects factors varied
across different conditions (e. g., interaction with Al vs. human).

Research sample A total of 1,401 individuals participated in this study. Sample sizes were determined based on pilot studies, and designed to achieve a
statistical power of 0.8 (a = 0.05). For each experiment, the largest sample size required to detect the key effect of interest was used
and rounded up to ensure sufficient power.

Experiment 1 —Level 1: N =50 (32 women, 18 men, Mage = 38.74 + 11.17 SD), experiment 1 — Human-Human — Level 2: N =50 (23
women, 25 men, 2 not reported, Mage = 34.58 + 11.87 SD), experiment 1 — Human-Al — Level 3: N = 50 (24 women, 24 men, 2 not
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13.45 SD), experiment 1 — Human-Human-perceived-as-Al — Level 3: N = 50 (18 women, 30 men, 1 not reported, 1 non-binary, Mage
=34.79 + 10.80 SD), experiment 2: N = 120 (57 women, 60 men, 1 other, 2 not reported, Mage = 38.67 + 13.19 SD), experiment 2
accurate algorithm: N = 50 (23 women, 27 men, Mage = 36.74 + 13.45 SD), experiment 2 biased algorithm: N = 50 (26 women, 23
men, 1 not reported, Mage = 34.91 + 8.87 SD), experiment 3: N = 100 (40 women, 56 men, 4 not reported, Mage = 30.71 + 12.07 SD),
Supplementary experiment 1: N = 50 (26 women, 17 men, 7 not reported, Mage = 39.18 + 14.01 SD), Supplementary experiment 2: N
=50 (24 women, 23 men, 1 other, 2 not reported, Mage = 36.45 + 12.97 SD), Supplementary experiment 3: N = 50 (20 women, 29
men, 1 not reported, Mage = 32.05 + 10.08 SD), Supplementary experiment 4: N = 386 (241 women, 122 men, 7 other, 16 not
reported, Mage = 28.07 + 4.65 SD), Supplementary experiment 5: N = 45 (19 women, 23 men, 1 other, 2 not reported, Mage = 39.50
+14.55 SD), Supplementary experiment 6: N = 200 (85 women, 98 men, 5 other, 12 not reported, Mage = 30.87 + 10.26 SD) and
Supplementary experiment 6: N = 200 (85 women, 98 men, 5 other, 12 not reported, Mage = 30.87 + 10.26 SD).

Samples were not representative.

Sampling strategy A convenience sampling method was used, with participants recruited through Prolific, an online platform that allows individuals to
voluntarily participate in experiments. Sample sizes were determined based on pilot studies, and designed to achieve a statistical
power of 0.8 (a = 0.05). For each experiment, the largest sample size required to detect the key effect of interest was used and




rounded up to ensure sufficient power.

Data collection Data was collected using an online computerized behavioral tasks. Participants were recruited via Prolific (https://prolific.ac/) and
received a payment of £7.5 per hour in exchange for participation, as well as a bonus fee ranging from £0.5 to £2. All participants had
normal or corrected-to-normal vision. Since the study was conducted online, blinding the researcher to the experimental hypothesis
was not relevant.

Timing April 2021 to March 2024.

Data exclusions In one experiment (Exp. 1: Human-Human Interaction/Level 2), 14 participants (out of 64) were excluded based on pre-established
criteria. Specifically, participants were excluded if they gave incorrect answers on more than 10% of the trials, which indicated that
they were not attending to the task. Including these participants did not change the results, and they were only excluded to rule out
the possibility that the lack of bias amplification in the human-human condition was due to participants inattention.

Non-participation No participants had dropped out or declined participation.

Randomization Studies were conducted within-subject. Experimental conditions were inter-mixed.
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