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Al tutoring outperforms in-class
active learning: an RCT introducing
a novel research-based design in an
authentic educational setting

Greg Kestin3", Kelly Miller>3, Anna Klales?, Timothy Milbourne! & Gregorio Ponti*

Advances in generative artificial intelligence show great potential for improving education. Yet little

is known about how this new technology should be used and how effective it can be compared to
current best practices. Here we report a randomized, controlled trial measuring college students’
learning and their perceptions when content is presented through an Al-powered tutor compared with
an active learning class. The novel design of the custom Al tutor is informed by the same pedagogical
best practices as employed in the in-class lessons. We find that students learn significantly more in less
time when using the Al tutor, compared with the in-class active learning. They also feel more engaged
and more motivated. These findings offer empirical evidence for the efficacy of a widely accessible Al-
powered pedagogy in significantly enhancing learning outcomes, presenting a compelling case for its
broad adoption in learning environments.

With their human-like conversational style and knowledge drawn from extremely large data sets, generative
artificial intelligence (GAI) chatbots have inspired visions of expert tutors available on demand through every
smartphone!. The President of the United States, at the time of this investigation in 2023, pledged to “shape AT’s
potential to transform education by creating resources to support educators deploying Al-enabled educational
tools, such as personalized tutoring in schools”! Despite this recent excitement, previous studies show mixed
results on the effectiveness of learning, even with the most advanced Al models®3. While these models can
answer technical questions, their unguided use lets students complete assignments without engaging in critical
thinking. After all, AI chatbots are generally designed to be helpful, not to promote learning. They are not trained
to follow pedagogical best practices (e.g., facilitating active learning, managing cognitive load*,! and promoting
a growth mindset).? Another well-known flaw of Al tutors is their uncanny confidence when giving an incorrect
answer or when marking a correct reply as incorrect®. As reported here, a carefully designed Al tutoring system,
using the best current GAI technology and deployed appropriately, can not only overcome these challenges but
also address significant known pedagogical challenges in an accessible way that can offer world-class education
to any community or learning environment with an internet connection.

Although passive lectures are among the least effective modes of instruction, they remain in wide use in
science, technology, engineering, and mathematics (STEM) courses®®. Passive lectures have several long-known
issues: 1. They move too quickly for some students and too slowly for others because the teacher controls the
pace of instruction; 2. Students do not receive personalized feedback to their questions as they arise; and 3. They

! Cognitive load refers to the total amount of mental effort used in the working memory. This concept emphasizes that
learners have a limited capacity to process new information and that instructional design should aim to manage cognitive
load effectively.

2Growth mindset refers to the belief that one’s abilities and intelligence can be developed through effort and learning.
3“ChatGPT sometimes writes plausible-sounding but incorrect or nonsensical answers.” https://openai.com/blog/chatgpt#O
penAL
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fail to maintain consistent student engagement. Active learning pedagogies,* such as peer instruction, small-
group activities, or a flipped classroom structure, have demonstrated significant improvements over passive
lectures®~!*, However, any approach that involves one teacher working with many students will suffer, at least in
part, from the same three problems that plague passive lectures.

Working with an expert personal tutor is generally regarded as the most efficient form of education'®. A tutor
can guide the student while providing personalized feedback and answering questions as they arise. Expert tutors
will adapt their approach to a student’s individual ability, pace, and specific needs. They offer a more focused and
efficient learning experience, managing the student’s cognitive load. In addition, personalized instruction can
foster a growth mindset, which has been shown to promote students’ persistence in the face of difficulties'®!”.
While the advantages of personalized instruction are clear, this model of education cannot scale to meet the
needs of a large number of students!.

What if an Al tutor could mimic the learning experience one would get from an expert (human) tutor?
It could address the unique needs of each individual through timely feedback while adopting what is known
from the science of how students learn best. This is the focus of our work. Through a design that involves
targeted, content-rich prompt engineering, we developed an online tutor that uses GAI and best practices from
pedagogy and educational psychology to promote learning in undergraduate science education. We conducted
a randomized controlled experiment in a large undergraduate physics course (N=194) at Harvard University,
with a student population broadly representative of those found across a range of institutions, to measure the
difference between 1) how much students learn and 2) students’ perceptions of the learning experience when
identical material is presented through an AT tutor compared with an active learning classroom.

Results

In this study, students were divided into two groups, each experiencing two lessons, each with distinct teaching
methodologies, in consecutive weeks. During, the first week, group 1 engaged with an Al-supported lesson
at home while group 2 participated in an active learning lesson in class. The conditions were reversed the
following week. To establish baseline knowledge, students from both groups completed a pre-test prior to each
lesson, focusing on surface tension in the first week and fluid flow in the second. Following each lesson, students
completed post-tests to measure content mastery and answered four questions aimed at gauging their learning
experience, including engagement, enjoyment, motivation, and growth mindset.

Learning gains: post-test scores

Learning gains were measured by comparing the post-test scores of the AI group and the in-class active learning
group to the pre-test scores of the two groups combined. Students in the AI group exhibited a higher median
(M) post-score (M =4.5, N=142) compared to those in the in-class active learning group (M =3.5, N=174). The
median learning gains for students, relative to the pre-test baseline (M =2.75, N=316), in the Al-tutored group
were over double® those for students in the in-class active learning group. We conducted a two-sample rank-
sum (Mann-Whitney) test to compare the distribution of post-scores of the two groups. The analysis revealed
a statistically significant difference (z=-5.6, p<107%). Figure 1 shows mean aggregate results (weeks 1 and 2
combined)® of the learning gains for the group taught with in-class active learning compared to the group taught
with the AT tutor.

Time on task

During a 75-minute period, the in-class students spent 15 minutes taking the pre- and post-tests; we assume
60 minutes spent on learning. For students in the AI group, we tracked their use of the AI tutor platform to
measure how long they spent on the material, the distribution for which is shown in Fig. 2. 70% of students in
the AI group spent less than 60 minutes on task, while 30% spent more than 60 minutes on task. The median
time on task for students in the AI group was 49 minutes.

Learning gains: linear regression model

We constructed a linear regression model (Table S1) to better understand how the type of instruction (in-class
active learning versus Al tutor) contributed to students’ mastery of the subject matter as measured by their post-
test scores. This model includes the following sets of controls. First, we controlled for background measures
of physics proficiency: specific content knowledge (pre-test score), broader proficiency in the course material
(midterm exam before the study), and prior conceptual understanding of physics (Force Concept Inventory
or FCI)!8. Second, we controlled for students’ prior experience with ChatGPT. Third, we controlled for factors
inherent to the crossover study design: the class topic (surface tension vs fluids) and the version of the pre/post
tests (A vs B). Finally, we controlled for time on task. Given that our experiment is a crossover design in which
each student experiences both conditions, this model clusters at the student level.

4 Active learning “includes any type of instructional activity that engages students in learning, beyond listening, reading, and
memorizing” (https://bokcenter.harvard.edu/active-learning#:~:text=Active%20learning%20includes%20any%20type,listeni
ng%2C%20reading%2C%20and%20memorizing).

5 Actual learning gains for students in the Al-tutored group are expected to be greater than those represented by metrics pre-
sented here due to a ceiling effect in the post-test scores (resulting from the unexpected effectiveness of the Al tutor). Note
that measures that are less sensitive to ceiling effect, such as the median, will be more reliable than measures that are more
sensitive to ceiling effect, such as straight gain or mean.

SWhile the data is combined, the trend for each weeks’ tests were as observed in the figure, namely post-test scores for the Al
group were greater than the in-class active learning group’ scores.
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Fig. 1. Comparison of learning gains: A comparison of mean post-test performance between students taught
with the in-class active learning and students taught with the AI tutor. Dotted line represents students’ mean
baseline knowledge before the lesson (i.e., the pre-test scores of both groups). Error bars show one standard
error of the mean.

Table S1 shows that, controlling for all these factors, the students in the AI group performed substantially
better on the post-test compared with those in the in-class active learning group. We show this to be a highly
significant (p < 1078) result with a large effect size. While the linear regression suggests an effect size of 0.63, this
is an underestimation due to ceiling effect; a quantile regression allows us to provide an estimate of the effect
size that avoids ceiling effect in the post-test scores. Such an analysis provides an effect size in the range of 0.73
to 1.3 standard deviations.

Notably, there was no correlation between the time on task and students’ post-test scores, despite quite a
wide range of times measured for the AI group (Fig. 2). As discussed further below, students’ ability to pace
themselves with the AT tutor is an advantage of personalized instruction compared with in-class learning.

Al tutor: students’ perceptions of learning
Figure 3 shows students’ average level of agreement with four statements about their perceptions of learning,
broken down between the two groups (in-class active learning vs. Al tutor). Students rated their level of
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Fig. 2. Al tutor time on task: Total time students in the AI group spent interacting with the tutor. Dotted line
denotes the length of the in-class active learning lesson (60 minutes).

agreement on a 5-point Likert scale, with 1 representing “strongly disagree” and 5 representing “strongly agree”
In responding to the first statement, relating to engagement, the students in the AI group agreed more strongly
(Mean=4.1, SD=0.98) than those in the in-class active learning group (Mean=3.6, SD=0.92), t(311)=-4.5,
p<0.0001. Likewise, in responding to the second statement, relating to motivation, students in the AI group
agreed more strongly (Mean=3.4, SD=1.0) than those in the in-class active learning group (Mean=3.1,
SD=0.86), t(311)=-3.4, p<0.001. Students’ average level of agreement with the remaining two statements
(relating enjoyment to growth mindset) were not statistically significantly different between the two groups.
To summarize, Fig. 3 shows that, on average, students in the AI group felt significantly more engaged and more
motivated during the AI class session than the students in the in-class active learning group, and the degree to
which both groups enjoyed the lesson and reported a growth mindset was comparable.

Discussion

We have found that when students interact with our Al tutor, at home, on their own, they learn significantly more
than when they engage with the same content during an in-class active learning lesson, while spending less time
on task. This finding underscores the transformative potential of Al tutors in authentic educational settings. In
order to realize this potential for improving STEM outcomes, student-Al interactions must be carefully designed
to follow research-based best practices.

The extensive pedagogical literature supports a set of best practices that foster students’ learning, applicable to
both human instructors and digital learning platforms. Key practices include (i) facilitating active learning!""%,
(ii) managing cognitive load*, (iii) promoting a growth mindset'>'6, (iv) scaffolding content®, (v) ensuring
accuracy of information and feedback, (vi) delivering such feedback and information in a targeted and timely
fashion?!, and (vii) allowing for self-pacing??. We aimed to design an Al system that conforms to these practices
to the fullest extent current technology allows, thus establishing a model for future educational Al applications.

Designing successful student-Al interactions

A subset of the best practices (i-iii) were incorporated into the AI pedagogy by careful engineering of the Al
tutor’s system prompt. We designed the Al tutor with a system prompt with guidelines (Supplementary Material
1) to facilitate active engagement, manage cognitive load, and promote a growth mindset. However, we found
that a system prompt could not reliably provide enough structure to scaffold problems with multiple parts (iv),
as the Al tutor would occasionally discuss parts out of sequence or that were not immediately relevant. For this
reason, the AI platform was designed to guide students sequentially through each part of each problem in the
lesson, mirroring the approach taken by the instructor during the in-class active learning (see screenshot of Al
tutor platform in Figure S1).
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Fig. 3. Student perception of learning experiences: Level of agreement to statements about perceptions of
learning experiences, comparing students taught by in-class active learning and students taught with the AI
tutor. Error bars show 1 standard error of the mean. Asterisks above the bars denote P-values generated by
dependent t-tests (***p <0.001).

The occurrence of inaccurate “hallucinations” by the current generation of large language models (LLMs)
poses a significant challenge for their use in education?*. Thus, we avoided relying solely on GPT-4 to generate
solutions for these activities. Given that LLMs proceed by next-token prediction, accuracy in complex math or
science problems is enhanced when the system generates, or is provided with, detailed step-by-step solutions?*.
Therefore, we enriched our prompts with comprehensive, step-by-step answers, guiding the AT tutor to deliver
accurate and high-quality explanations (v) to students. As a result, 83% of students reported that the AI tutor’s
explanations were as good as, or better than, those from human instructors in the class.

While best practices (i-v) can be readily adhered to in a classroom setting, the remaining best practices (vi-
vii) cannot. Providing timely feedback that targets the specific needs of individual students (vi) and self-pacing
(vii) are difficult to achieve and impossible to maintain in a typical classroom. We believe that the increased
learning from structured AI tutoring is largely due to its ability to offer personalized feedback on demand—just
as one-on-one tutoring from a (human) expert is superior to classroom instruction'®. In addition, interactions
with the Al tutor are self-paced (vii), as indicated by the distribution of times in Fig. 2. Students who need more
time to build conceptual understanding or to fill gaps in their knowledge can take that time, instead of having
to synchronously follow the pace of the in-class lesson. Students who are familiar with the material or have
underlying skills, however, can move through the activities in less time than required for the in-class lesson. We
measured the students” perception of pace during the control condition (in-class active learning) on the days the
experiment took place. Notably, the 3.8% of students who found the pace of class “too fast” all spent more than
the median time (49 minutes) on the Al lesson, while the 2.2% who found the pace of the in-class lesson “too
slow” all spent less than the median time on the AI lesson.

Our results contrast with previous studies that have shown limitations of AI-powered instruction. Krupp et
al. (2023) observed limited reflection among students using ChatGPT without guidance?®, while Forero (2023)
reported a decline in student performance when Al interactions lacked structure and did not encourage critical
thinking?. These previous approaches did not adhere to the same research-based best practices that informed our
approach. Our success suggests that thoughtful implementation of Al-based tutoring could lead to significant
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improvements to current pedagogy and enhanced learning gains for a broad range of subjects in a format that is
accessible in any environment with an internet connection.

Implications for personal Al tutors in education
How might an AT tutoring system, such as the one we have deployed, integrate into current pedagogical best
practices, given its effectiveness in terms of learning gains and student perceptions?

Existing pedagogies often fail to meet students’ individual needs, especially in classrooms where students
have a wide range of prior knowledge. Here, we have shown the advantage of using asynchronous AI tutoring
as students’ first substantial engagement with challenging material. AI could be used to effectively teach
introductory material to students before class, which allows precious class time to be spent developing higher-
order skills such as advanced problem solving, project-based learning, and group work. Instructors can assess
these skills in person, which avoids the problematic use of Al as a shortcut on assessments such as homework,
papers, and projects. As in a “flipped classroom” approach, an AI tutor should not replace in-person teaching—
rather, it should be used to bring all students up to a level where they can achieve the maximum benefit from
their time in class.

That said, beyond the initial introduction of material, AI tutors like the ones employed here could serve an
extremely wide range of purposes, such as assisting with homework, offering study guidance, and providing
remedial lessons for underprepared students. Yet our results show that, with today’s GAI technology, pedagogical
best practices must be explicitly and carefully built into each such application. As seen in previous studies®?>,
instructors should avoid using Al in situations where students are likely to use it as a crutch to circumvent
critical thinking. We advise against the notion that AL, solely due to its efficacy in enhancing teaching and
learning, should entirely supplant in-class instructional methods. Our demonstration illustrates how AI can
bolster student learning beyond the confines of the classroom. We advocate harnessing this capability to enable
instructors to use in-class sessions for activities and projects that foster advanced cognitive skills such as critical
thinking and content synthesis.

Context, limitations, and future directions

Our Al tutoring approach was applied in a setting where students were engaging substantially with material in
particular subject areas for the first time. Our lessons were comprised of activities focused on learning objectives
categorized at the understanding, applying, and analyzing levels of Bloom’s Taxonomy’—as were the associated
pre- and post-test questions®. This stage of learning, characterized by a meaningful degree of information
delivery, appears to be particularly well suited for current generative Al tutors. The significant gains and
positive affect observed in this study may also depend on several factors: a heterogeneous student population
requiring varying instructional paces, integration of high-quality instructional videos,’ a large language model
capable of closely following complex prompts (e.g., GPT-4), expert-crafted, question-specific prompts written
by instructors experienced with the content, a carefully structured framework designed to scaffold and guide
student interactions, and content that lends itself to such a format. While the advantages of the experimental
condition are widely generalizable and our findings have broad implications, we do not presume that structured
Al tutoring will always outperform in-class active learning in all contexts, for example, those requiring complex
synthesis of multiple concepts and higher-order critical thinking.

Compelling directions for future work include exploring other contexts throughout the learning process
where Al tutoring may be successfully implemented, such as in homework, recitation, exam studying, pre-
class assignments, and laboratory. Valuable follow-up studies could also explicitly examine the details of such
combinations throughout an entire course. This would also allow for systematic integration of well-established
retention enhancing strategies (e.g., spacing) and could provide insights into other novel phenomena that
may arise from prolonged and varied use of Al in education, such as potential impact on collaboration skills.
Given that the current Al tutor implementation mirrors well-established in-class active learning pedagogies
and generates comparable affect!®—with its primary difference (besides personalization) being the medium
of delivery, which typically does not impact learning on its own?®—it is reasonable to expect findings from
in-class active learning approaches to carry over. Nonetheless, studies that explicitly replicate known in-class
active learning results*”?® would be valuable for confirming and refining the details of this transferability. Such
research could include explorations of the qualities that constitute effective system prompts and behaviors for AI
tutors in various situations (e.g., determining when the AI tutor should openly provide answers versus guiding
students to reflect on their own responses).

Generative Al technology is developing very rapidly, allowing for expansion of the capabilities and application
of Al tutoring. While accuracy of our Al tutor relied on pre-written answers, as generative Al models improve in
scientific reasoning!!, studies could explore whether such efficacy could be achieved without a provided solution.

7Bloom’s Taxonomy is a hierarchical model used to classify educational learning objectives into levels of complexity and
specificity. The original taxonomy was revised in 2001 and is as follows: remembering, understanding, applying, analyzing,
evaluating, and creating. Anderson, L. W. & Krathwohl, D. R. A Taxonomy for Learning, Teaching, and Assessing: A Revision
of Bloom’s Taxonomy of Educational Objectives (Longman, 2001).

8339% analyzing, 41% applying, 21% understanding, and 4% remembering.

9Videos were produced at the Harvard University Derek Bok Center production studio, and the instructor (GK) has a dec-
ade of experience hosting, writing, and producing videos and documentaries (e.g., via NOVA | PBS).

10Equivalent growth mindset and enjoyment, increased engagement and motivation, and improved satisfaction with
feedback.

! Currently, the models with the most advanced scientific reasoning capabilities have longer response times; in the context of
Al tutoring, the model choice should take into account efficiency as well as reasoning capabilities.
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Also, in our approach, feedback was provided in response to student input, but multimodality would allow AI
systems to interpret images (or audio) of a student’s work and more proactively provide feedback. Investigations
could explore whether holistic monitoring of a student’s process could provide feedback on issues with thinking
that may not be addressed by current pedagogies (in or out of the classroom) in which students typically receive
targeted feedback only when they ask a question.

Conclusion

We have built an Al-based tutor, engineered with appropriate prompts and scaffolding, that helps students learn
significantly more in less time and feel more engaged and motivated compared with in-class active learning. This
study confirms the feasibility and effectiveness of AI tutors in educational settings, and suggests design principles
to guide future development of these tools. As the prompts described here can be adapted to any subject matter,
this approach can provide students, in a wide range of disciplines, on-demand AI-powered support.

These results and principles provide a blueprint for highly effective AI-powered learning frameworks that
are engaging and suggest a pathway for widely accessible education on which policymakers, technologists, and
educators can collaborate. It also serves as a foundation for a series of explorations of the use of Al in educational
settings.

Methods

Study population

The present study took place during the Fall 2023 semester in Physical Sciences 2 (PS2), which is an introductory
physics class for the life sciences and is Harvard’s largest physics class (N=233). Students were randomly
assigned to two groups, respecting the constraint that students who regularly worked together in class during
peer instruction were placed in the same group in order to maximize the effectiveness of their in-class learning.
The demographics of the two groups were comparable (see table S2A), as were previous measures of their physics
background knowledge (see Table S2B). Note that FCI pretest scores are comparable to those of students at other
universities”. Of the 233 enrolled students, 194 were eligible for inclusion in the study. Eligibility was based on
students’ consent, participation in both in-class and Al-tutored instruction, and completion of all pre-tests and
post-tests.

We note that the results hold for students with both lower and higher performance abilities than typical
students at various institutions, as assessed by the widely recognized FCI test. They also hold for all degrees of
scientific attitudes—from non-expert to expert—as gauged by the CLASS survey. Typical pre-instruction FCI
scores in educational institutions range from aproximately 30% to 50%. In this study, significant subpopulations
span this range. The subpopulations of students with pre-instruction FCI scores below 40% and those above 40%
both showed significantly better post-test performance with AI tutoring compared to in-class active learning
(p<0.001). This improvement was similarly observed in students below and above the 65% benchmark® in
scientific attitudes on the CLASS.

Course setting

The course (PS2) meets twice per week for 75 minutes each. The study took place during one of the two meeting
of the class during the ninth and tenth weeks of the course. All in-class lessons employed research-based best
practices for in-class active learning®2. Each class involves a series of activities that teach physics concepts and
problem-solving skills. First the instructor introduces an activity, then students work through the activity in
self-selected groups with support and guidance from course staff, and finally the instructor provides targeted
feedback to address students’ questions and difficulties.

This instructional approach has proved to be a successful implementation of active learning, and has been
shown to offer a significant improvement over passive lectures *>. We note that the authors and instructors
represented in the literature demonstrating this in-class active learning approach to be effective and superior
to passive instruction overlap with those of the present study. Similar active learning approaches have been
shown to increase learning across a wide range of STEM fields**. Although active learning pedagogies may
elicit negative perceptions from students®, both course instructors, as well as their presentations in the course,
achieved student evaluation scores above the departmental and division averages. The active learning pedagogy,
optimized over the years to cater to the vast majority of the student population, ensures minimal inactivity by
strategically allowing instructors to intervene and adjust the class dynamically based on real-time observations
of student engagement and performance’2.

To verify the active learning emphasis of the class, students were asked the following question at the end of
the semester: “Compared to the in-class time in other STEM classes you have taken at Harvard, to what extent
does the typical PS2 in-class time use active learning strategies (i.e., provide the opportunity to discuss and work
on problems in class as opposed to passively listening).” The overwhelming majority of students (89%) indicated
that PS2 used more active learning compared to other STEM courses.

Study design

The present study was approved by the Harvard University IRB (study no. IRB23-0797) and followed a crossover
design. The design allowed for control of all aspects of the lessons that were not of interest. The crossover design
is summarized in Table S3. For each of two lessons, each student: 1) took a pre-class quiz that established their
baseline knowledge of the content for that lesson; 2) engaged in either the active classroom lesson (control
condition) or the AI tutor lesson (experimental condition); and 3) took a post-class quiz as a test of learning. The
content and worksheet for the control and experimental conditions were identical. The introductions for each
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activity were also identical, varying only by the format of presentation: live and in-person for the control group
and over pre-recorded video for the experimental group.

Given the crossover design, all students experienced both conditions once during the study. The structure of
the experimental condition differed from the control condition in that all interactions and feedback were with
an Al tutor, rather than with peer-instruction followed by instructor feedback. Students in the experimental
condition worked through the handout, asking questions and confirming answers with the Al tutor, called “PS2
Pal” Students were given equal participation credit for both conditions as well as for the associated pre- and
post-test. Students were told that their performance on the pre- and post-tests would not impact their course
grade in any way but were told that in order to receive participation credit they needed to demonstrate that they
had made an honest effort in completing the tests.

Additional controls

In addition to using a crossover design we rigorously controlled for potential bias and other unwanted influences.
To prevent the specific test questions from influencing the teaching or AI tutor design, the tests were constructed
by a separate team member from those involved in designing the AI or teaching the lessons. To prevent details
of the lessons or AI prompts from influencing the test of learning, the tests were written based on the learning
goals for the lesson and not the specific lesson content.

The lesson topics were chosen such that the result would be optimally generalizable. These topics were
independent of each other, had little dependence on previous course content, and required no special knowledge
beyond high-school level mathematics. The topics were also chosen to minimize the influence of potential prior
knowledge of the material—over 90% of the students reported that they had not studied these topics in depth
before this course.

To ensure that the effect was independent of the particular instructor, the two lessons were taught by different
instructors (i.e., each of the course’s two co-instructors). We note that the two instructors received student
evaluations on their teaching that exceeded the departmental and divisional means.

To make sure that the study design did not impact the effectiveness of in-person instruction during the
experiment, students in class learned from the same instructors, with the same student:staff ratio, and in the
same peer-instruction groups as they had throughout the course. As mentioned above, keeping students with
their peer-instruction groups meant that subjects were randomized at the level of these groups (2-3 students)
rather than as individuals. An alternate linear regression model that clusters at the group level (instead of at
the level of individual students) has similarly robust results for AI versus in-class instruction (p<0.001) and
negligible changes to the point estimates for the effects of each covariate. With this clustered model, however,
it is difficult to interpret factors such as time on task, which varies widely at the individual level under the AI-
tutored conditions.

While the time commitment for preparation of a single AI-supported lesson was very manageable, there was
significant overhead. Preparing system prompts for questions and solutions for a particular lesson was done
over a few days. Since activities and solutions were already written for the in-class lesson, this time was spent
converting the format of the content to a format appropriate for the AI platform as well as engaging in test
conversations for each question and iterating. The most significant time commitment involved in preparing the
Al-supported lessons was the development of an Al tutor platform software that took pedagogical best practices
into consideration (e.g., structured around individual questions embedded in individual assignments), which
took several months.

Data availability
https://github.com/Harvard Altutor/Study-Data-v4.
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